axmol/thirdparty/bullet/BulletCollision/CollisionShapes/btPolyhedralConvexShape.cpp

550 lines
14 KiB
C++
Raw Normal View History

2020-11-16 14:47:43 +08:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#if defined(_WIN32) || defined(__i386__)
#define BT_USE_SSE_IN_API
#endif
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "btConvexPolyhedron.h"
#include "LinearMath/btConvexHullComputer.h"
#include <new>
#include "LinearMath/btGeometryUtil.h"
#include "LinearMath/btGrahamScan2dConvexHull.h"
btPolyhedralConvexShape::btPolyhedralConvexShape() : btConvexInternalShape(),
m_polyhedron(0)
{
}
btPolyhedralConvexShape::~btPolyhedralConvexShape()
{
if (m_polyhedron)
{
m_polyhedron->~btConvexPolyhedron();
btAlignedFree(m_polyhedron);
}
}
void btPolyhedralConvexShape::setPolyhedralFeatures(btConvexPolyhedron& polyhedron)
{
if (m_polyhedron)
{
*m_polyhedron = polyhedron;
}
else
{
void* mem = btAlignedAlloc(sizeof(btConvexPolyhedron), 16);
m_polyhedron = new (mem) btConvexPolyhedron(polyhedron);
}
}
bool btPolyhedralConvexShape::initializePolyhedralFeatures(int shiftVerticesByMargin)
{
if (m_polyhedron)
{
m_polyhedron->~btConvexPolyhedron();
btAlignedFree(m_polyhedron);
}
void* mem = btAlignedAlloc(sizeof(btConvexPolyhedron), 16);
m_polyhedron = new (mem) btConvexPolyhedron;
btAlignedObjectArray<btVector3> orgVertices;
for (int i = 0; i < getNumVertices(); i++)
{
btVector3& newVertex = orgVertices.expand();
getVertex(i, newVertex);
}
btConvexHullComputer conv;
if (shiftVerticesByMargin)
{
btAlignedObjectArray<btVector3> planeEquations;
btGeometryUtil::getPlaneEquationsFromVertices(orgVertices, planeEquations);
btAlignedObjectArray<btVector3> shiftedPlaneEquations;
for (int p = 0; p < planeEquations.size(); p++)
{
btVector3 plane = planeEquations[p];
// btScalar margin = getMargin();
plane[3] -= getMargin();
shiftedPlaneEquations.push_back(plane);
}
btAlignedObjectArray<btVector3> tmpVertices;
btGeometryUtil::getVerticesFromPlaneEquations(shiftedPlaneEquations, tmpVertices);
conv.compute(&tmpVertices[0].getX(), sizeof(btVector3), tmpVertices.size(), 0.f, 0.f);
}
else
{
conv.compute(&orgVertices[0].getX(), sizeof(btVector3), orgVertices.size(), 0.f, 0.f);
}
#ifndef BT_RECONSTRUCT_FACES
int numVertices = conv.vertices.size();
m_polyhedron->m_vertices.resize(numVertices);
for (int p = 0; p < numVertices; p++)
{
m_polyhedron->m_vertices[p] = conv.vertices[p];
}
int v0, v1;
for (int j = 0; j < conv.faces.size(); j++)
{
btVector3 edges[3];
int numEdges = 0;
btFace combinedFace;
const btConvexHullComputer::Edge* edge = &conv.edges[conv.faces[j]];
v0 = edge->getSourceVertex();
int prevVertex = v0;
combinedFace.m_indices.push_back(v0);
v1 = edge->getTargetVertex();
while (v1 != v0)
{
btVector3 wa = conv.vertices[prevVertex];
btVector3 wb = conv.vertices[v1];
btVector3 newEdge = wb - wa;
newEdge.normalize();
if (numEdges < 2)
edges[numEdges++] = newEdge;
//face->addIndex(v1);
combinedFace.m_indices.push_back(v1);
edge = edge->getNextEdgeOfFace();
prevVertex = v1;
int v01 = edge->getSourceVertex();
v1 = edge->getTargetVertex();
}
btAssert(combinedFace.m_indices.size() > 2);
btVector3 faceNormal = edges[0].cross(edges[1]);
faceNormal.normalize();
btScalar planeEq = 1e30f;
for (int v = 0; v < combinedFace.m_indices.size(); v++)
{
btScalar eq = m_polyhedron->m_vertices[combinedFace.m_indices[v]].dot(faceNormal);
if (planeEq > eq)
{
planeEq = eq;
}
}
combinedFace.m_plane[0] = faceNormal.getX();
combinedFace.m_plane[1] = faceNormal.getY();
combinedFace.m_plane[2] = faceNormal.getZ();
combinedFace.m_plane[3] = -planeEq;
m_polyhedron->m_faces.push_back(combinedFace);
}
#else //BT_RECONSTRUCT_FACES
btAlignedObjectArray<btVector3> faceNormals;
int numFaces = conv.faces.size();
faceNormals.resize(numFaces);
btConvexHullComputer* convexUtil = &conv;
btAlignedObjectArray<btFace> tmpFaces;
tmpFaces.resize(numFaces);
int numVertices = convexUtil->vertices.size();
m_polyhedron->m_vertices.resize(numVertices);
for (int p = 0; p < numVertices; p++)
{
m_polyhedron->m_vertices[p] = convexUtil->vertices[p];
}
for (int i = 0; i < numFaces; i++)
{
int face = convexUtil->faces[i];
//printf("face=%d\n",face);
const btConvexHullComputer::Edge* firstEdge = &convexUtil->edges[face];
const btConvexHullComputer::Edge* edge = firstEdge;
btVector3 edges[3];
int numEdges = 0;
//compute face normals
do
{
int src = edge->getSourceVertex();
tmpFaces[i].m_indices.push_back(src);
int targ = edge->getTargetVertex();
btVector3 wa = convexUtil->vertices[src];
btVector3 wb = convexUtil->vertices[targ];
btVector3 newEdge = wb - wa;
newEdge.normalize();
if (numEdges < 2)
edges[numEdges++] = newEdge;
edge = edge->getNextEdgeOfFace();
} while (edge != firstEdge);
btScalar planeEq = 1e30f;
if (numEdges == 2)
{
faceNormals[i] = edges[0].cross(edges[1]);
faceNormals[i].normalize();
tmpFaces[i].m_plane[0] = faceNormals[i].getX();
tmpFaces[i].m_plane[1] = faceNormals[i].getY();
tmpFaces[i].m_plane[2] = faceNormals[i].getZ();
tmpFaces[i].m_plane[3] = planeEq;
}
else
{
btAssert(0); //degenerate?
faceNormals[i].setZero();
}
for (int v = 0; v < tmpFaces[i].m_indices.size(); v++)
{
btScalar eq = m_polyhedron->m_vertices[tmpFaces[i].m_indices[v]].dot(faceNormals[i]);
if (planeEq > eq)
{
planeEq = eq;
}
}
tmpFaces[i].m_plane[3] = -planeEq;
}
//merge coplanar faces and copy them to m_polyhedron
btScalar faceWeldThreshold = 0.999f;
btAlignedObjectArray<int> todoFaces;
for (int i = 0; i < tmpFaces.size(); i++)
todoFaces.push_back(i);
while (todoFaces.size())
{
btAlignedObjectArray<int> coplanarFaceGroup;
int refFace = todoFaces[todoFaces.size() - 1];
coplanarFaceGroup.push_back(refFace);
btFace& faceA = tmpFaces[refFace];
todoFaces.pop_back();
btVector3 faceNormalA(faceA.m_plane[0], faceA.m_plane[1], faceA.m_plane[2]);
for (int j = todoFaces.size() - 1; j >= 0; j--)
{
int i = todoFaces[j];
btFace& faceB = tmpFaces[i];
btVector3 faceNormalB(faceB.m_plane[0], faceB.m_plane[1], faceB.m_plane[2]);
if (faceNormalA.dot(faceNormalB) > faceWeldThreshold)
{
coplanarFaceGroup.push_back(i);
todoFaces.remove(i);
}
}
bool did_merge = false;
if (coplanarFaceGroup.size() > 1)
{
//do the merge: use Graham Scan 2d convex hull
btAlignedObjectArray<GrahamVector3> orgpoints;
btVector3 averageFaceNormal(0, 0, 0);
for (int i = 0; i < coplanarFaceGroup.size(); i++)
{
// m_polyhedron->m_faces.push_back(tmpFaces[coplanarFaceGroup[i]]);
btFace& face = tmpFaces[coplanarFaceGroup[i]];
btVector3 faceNormal(face.m_plane[0], face.m_plane[1], face.m_plane[2]);
averageFaceNormal += faceNormal;
for (int f = 0; f < face.m_indices.size(); f++)
{
int orgIndex = face.m_indices[f];
btVector3 pt = m_polyhedron->m_vertices[orgIndex];
bool found = false;
for (int i = 0; i < orgpoints.size(); i++)
{
//if ((orgpoints[i].m_orgIndex == orgIndex) || ((rotatedPt-orgpoints[i]).length2()<0.0001))
if (orgpoints[i].m_orgIndex == orgIndex)
{
found = true;
break;
}
}
if (!found)
orgpoints.push_back(GrahamVector3(pt, orgIndex));
}
}
btFace combinedFace;
for (int i = 0; i < 4; i++)
combinedFace.m_plane[i] = tmpFaces[coplanarFaceGroup[0]].m_plane[i];
btAlignedObjectArray<GrahamVector3> hull;
averageFaceNormal.normalize();
GrahamScanConvexHull2D(orgpoints, hull, averageFaceNormal);
for (int i = 0; i < hull.size(); i++)
{
combinedFace.m_indices.push_back(hull[i].m_orgIndex);
for (int k = 0; k < orgpoints.size(); k++)
{
if (orgpoints[k].m_orgIndex == hull[i].m_orgIndex)
{
orgpoints[k].m_orgIndex = -1; // invalidate...
break;
}
}
}
// are there rejected vertices?
bool reject_merge = false;
for (int i = 0; i < orgpoints.size(); i++)
{
if (orgpoints[i].m_orgIndex == -1)
continue; // this is in the hull...
// this vertex is rejected -- is anybody else using this vertex?
for (int j = 0; j < tmpFaces.size(); j++)
{
btFace& face = tmpFaces[j];
// is this a face of the current coplanar group?
bool is_in_current_group = false;
for (int k = 0; k < coplanarFaceGroup.size(); k++)
{
if (coplanarFaceGroup[k] == j)
{
is_in_current_group = true;
break;
}
}
if (is_in_current_group) // ignore this face...
continue;
// does this face use this rejected vertex?
for (int v = 0; v < face.m_indices.size(); v++)
{
if (face.m_indices[v] == orgpoints[i].m_orgIndex)
{
// this rejected vertex is used in another face -- reject merge
reject_merge = true;
break;
}
}
if (reject_merge)
break;
}
if (reject_merge)
break;
}
if (!reject_merge)
{
// do this merge!
did_merge = true;
m_polyhedron->m_faces.push_back(combinedFace);
}
}
if (!did_merge)
{
for (int i = 0; i < coplanarFaceGroup.size(); i++)
{
btFace face = tmpFaces[coplanarFaceGroup[i]];
m_polyhedron->m_faces.push_back(face);
}
}
}
#endif //BT_RECONSTRUCT_FACES
m_polyhedron->initialize();
return true;
}
#ifndef MIN
#define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#endif
btVector3 btPolyhedralConvexShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0) const
{
btVector3 supVec(0, 0, 0);
#ifndef __SPU__
int i;
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1, 0, 0);
}
else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
for (int k = 0; k < getNumVertices(); k += 128)
{
btVector3 temp[128];
int inner_count = MIN(getNumVertices() - k, 128);
for (i = 0; i < inner_count; i++)
getVertex(i, temp[i]);
i = (int)vec.maxDot(temp, inner_count, newDot);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = temp[i];
}
}
#endif //__SPU__
return supVec;
}
void btPolyhedralConvexShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
{
#ifndef __SPU__
int i;
btVector3 vtx;
btScalar newDot;
for (i = 0; i < numVectors; i++)
{
supportVerticesOut[i][3] = btScalar(-BT_LARGE_FLOAT);
}
for (int j = 0; j < numVectors; j++)
{
const btVector3& vec = vectors[j];
for (int k = 0; k < getNumVertices(); k += 128)
{
btVector3 temp[128];
int inner_count = MIN(getNumVertices() - k, 128);
for (i = 0; i < inner_count; i++)
getVertex(i, temp[i]);
i = (int)vec.maxDot(temp, inner_count, newDot);
if (newDot > supportVerticesOut[j][3])
{
supportVerticesOut[j] = temp[i];
supportVerticesOut[j][3] = newDot;
}
}
}
#endif //__SPU__
}
void btPolyhedralConvexShape::calculateLocalInertia(btScalar mass, btVector3& inertia) const
{
#ifndef __SPU__
//not yet, return box inertia
btScalar margin = getMargin();
btTransform ident;
ident.setIdentity();
btVector3 aabbMin, aabbMax;
getAabb(ident, aabbMin, aabbMax);
btVector3 halfExtents = (aabbMax - aabbMin) * btScalar(0.5);
btScalar lx = btScalar(2.) * (halfExtents.x() + margin);
btScalar ly = btScalar(2.) * (halfExtents.y() + margin);
btScalar lz = btScalar(2.) * (halfExtents.z() + margin);
const btScalar x2 = lx * lx;
const btScalar y2 = ly * ly;
const btScalar z2 = lz * lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2 + z2, x2 + z2, x2 + y2));
#endif //__SPU__
}
void btPolyhedralConvexAabbCachingShape::setLocalScaling(const btVector3& scaling)
{
btConvexInternalShape::setLocalScaling(scaling);
recalcLocalAabb();
}
btPolyhedralConvexAabbCachingShape::btPolyhedralConvexAabbCachingShape()
: btPolyhedralConvexShape(),
m_localAabbMin(1, 1, 1),
m_localAabbMax(-1, -1, -1),
m_isLocalAabbValid(false)
{
}
void btPolyhedralConvexAabbCachingShape::getAabb(const btTransform& trans, btVector3& aabbMin, btVector3& aabbMax) const
{
getNonvirtualAabb(trans, aabbMin, aabbMax, getMargin());
}
void btPolyhedralConvexAabbCachingShape::recalcLocalAabb()
{
m_isLocalAabbValid = true;
#if 1
static const btVector3 _directions[] =
{
btVector3(1., 0., 0.),
btVector3(0., 1., 0.),
btVector3(0., 0., 1.),
btVector3(-1., 0., 0.),
btVector3(0., -1., 0.),
btVector3(0., 0., -1.)};
btVector3 _supporting[] =
{
btVector3(0., 0., 0.),
btVector3(0., 0., 0.),
btVector3(0., 0., 0.),
btVector3(0., 0., 0.),
btVector3(0., 0., 0.),
btVector3(0., 0., 0.)};
batchedUnitVectorGetSupportingVertexWithoutMargin(_directions, _supporting, 6);
for (int i = 0; i < 3; ++i)
{
m_localAabbMax[i] = _supporting[i][i] + m_collisionMargin;
m_localAabbMin[i] = _supporting[i + 3][i] - m_collisionMargin;
}
#else
for (int i = 0; i < 3; i++)
{
btVector3 vec(btScalar(0.), btScalar(0.), btScalar(0.));
vec[i] = btScalar(1.);
btVector3 tmp = localGetSupportingVertex(vec);
m_localAabbMax[i] = tmp[i];
vec[i] = btScalar(-1.);
tmp = localGetSupportingVertex(vec);
m_localAabbMin[i] = tmp[i];
}
#endif
}