axmol/chipmunk/src/cpBody.c

193 lines
4.7 KiB
C
Raw Normal View History

2010-09-04 18:18:14 +08:00
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <float.h>
#include <stdarg.h>
2010-09-04 18:18:14 +08:00
#include "chipmunk_private.h"
// initialized in cpInitChipmunk()
cpBody cpStaticBodySingleton;
2010-09-04 18:18:14 +08:00
cpBody*
cpBodyAlloc(void)
{
return (cpBody *)cpmalloc(sizeof(cpBody));
}
cpBodyVelocityFunc cpBodyUpdateVelocityDefault = cpBodyUpdateVelocity;
cpBodyPositionFunc cpBodyUpdatePositionDefault = cpBodyUpdatePosition;
cpBody*
cpBodyInit(cpBody *body, cpFloat m, cpFloat i)
{
body->velocity_func = cpBodyUpdateVelocityDefault;
body->position_func = cpBodyUpdatePositionDefault;
cpBodySetMass(body, m);
cpBodySetMoment(body, i);
body->p = cpvzero;
body->v = cpvzero;
body->f = cpvzero;
cpBodySetAngle(body, 0.0f);
body->w = 0.0f;
body->t = 0.0f;
body->v_bias = cpvzero;
body->w_bias = 0.0f;
body->data = NULL;
body->v_limit = (cpFloat)INFINITY;
body->w_limit = (cpFloat)INFINITY;
body->space = NULL;
body->shapesList = NULL;
cpComponentNode node = {NULL, NULL, 0, 0.0f};
body->node = node;
2010-09-04 18:18:14 +08:00
return body;
}
cpBody*
cpBodyNew(cpFloat m, cpFloat i)
{
return cpBodyInit(cpBodyAlloc(), m, i);
}
cpBody *
cpBodyInitStatic(cpBody *body)
{
cpBodyInit(body, (cpFloat)INFINITY, (cpFloat)INFINITY);
body->node.idleTime = (cpFloat)INFINITY;
return body;
}
cpBody *
cpBodyNewStatic()
{
return cpBodyInitStatic(cpBodyAlloc());
}
2010-09-04 18:18:14 +08:00
void cpBodyDestroy(cpBody *body){}
void
cpBodyFree(cpBody *body)
{
if(body){
cpBodyDestroy(body);
cpfree(body);
}
}
void
cpBodySetMass(cpBody *body, cpFloat mass)
{
body->m = mass;
body->m_inv = 1.0f/mass;
}
void
cpBodySetMoment(cpBody *body, cpFloat moment)
{
body->i = moment;
body->i_inv = 1.0f/moment;
}
void
cpBodySetAngle(cpBody *body, cpFloat angle)
{
body->a = angle;//fmod(a, (cpFloat)M_PI*2.0f);
body->rot = cpvforangle(angle);
}
void
cpBodySlew(cpBody *body, cpVect pos, cpFloat dt)
{
cpVect delta = cpvsub(pos, body->p);
body->v = cpvmult(delta, 1.0f/dt);
}
void
cpBodyUpdateVelocity(cpBody *body, cpVect gravity, cpFloat damping, cpFloat dt)
{
body->v = cpvclamp(cpvadd(cpvmult(body->v, damping), cpvmult(cpvadd(gravity, cpvmult(body->f, body->m_inv)), dt)), body->v_limit);
cpFloat w_limit = body->w_limit;
body->w = cpfclamp(body->w*damping + body->t*body->i_inv*dt, -w_limit, w_limit);
}
void
cpBodyUpdatePosition(cpBody *body, cpFloat dt)
{
body->p = cpvadd(body->p, cpvmult(cpvadd(body->v, body->v_bias), dt));
cpBodySetAngle(body, body->a + (body->w + body->w_bias)*dt);
body->v_bias = cpvzero;
body->w_bias = 0.0f;
}
void
cpBodyResetForces(cpBody *body)
{
body->f = cpvzero;
body->t = 0.0f;
}
void
cpBodyApplyForce(cpBody *body, cpVect force, cpVect r)
{
body->f = cpvadd(body->f, force);
body->t += cpvcross(r, force);
}
void
cpApplyDampedSpring(cpBody *a, cpBody *b, cpVect anchr1, cpVect anchr2, cpFloat rlen, cpFloat k, cpFloat dmp, cpFloat dt)
{
// Calculate the world space anchor coordinates.
cpVect r1 = cpvrotate(anchr1, a->rot);
cpVect r2 = cpvrotate(anchr2, b->rot);
cpVect delta = cpvsub(cpvadd(b->p, r2), cpvadd(a->p, r1));
cpFloat dist = cpvlength(delta);
cpVect n = dist ? cpvmult(delta, 1.0f/dist) : cpvzero;
cpFloat f_spring = (dist - rlen)*k;
// Calculate the world relative velocities of the anchor points.
cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
// Calculate the damping force.
// This really should be in the impulse solver and can produce problems when using large damping values.
cpFloat vrn = cpvdot(cpvsub(v2, v1), n);
cpFloat f_damp = vrn*cpfmin(dmp, 1.0f/(dt*(a->m_inv + b->m_inv)));
// Apply!
cpVect f = cpvmult(n, f_spring + f_damp);
cpBodyApplyForce(a, f, r1);
cpBodyApplyForce(b, cpvneg(f), r2);
}