// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef B2_PULLEY_JOINT_H #define B2_PULLEY_JOINT_H #include "b2_api.h" #include "b2_joint.h" const float b2_minPulleyLength = 2.0f; /// Pulley joint definition. This requires two ground anchors, /// two dynamic body anchor points, and a pulley ratio. struct B2_API b2PulleyJointDef : public b2JointDef { b2PulleyJointDef() { type = e_pulleyJoint; groundAnchorA.Set(-1.0f, 1.0f); groundAnchorB.Set(1.0f, 1.0f); localAnchorA.Set(-1.0f, 0.0f); localAnchorB.Set(1.0f, 0.0f); lengthA = 0.0f; lengthB = 0.0f; ratio = 1.0f; collideConnected = true; } /// Initialize the bodies, anchors, lengths, max lengths, and ratio using the world anchors. void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& groundAnchorA, const b2Vec2& groundAnchorB, const b2Vec2& anchorA, const b2Vec2& anchorB, float ratio); /// The first ground anchor in world coordinates. This point never moves. b2Vec2 groundAnchorA; /// The second ground anchor in world coordinates. This point never moves. b2Vec2 groundAnchorB; /// The local anchor point relative to bodyA's origin. b2Vec2 localAnchorA; /// The local anchor point relative to bodyB's origin. b2Vec2 localAnchorB; /// The a reference length for the segment attached to bodyA. float lengthA; /// The a reference length for the segment attached to bodyB. float lengthB; /// The pulley ratio, used to simulate a block-and-tackle. float ratio; }; /// The pulley joint is connected to two bodies and two fixed ground points. /// The pulley supports a ratio such that: /// length1 + ratio * length2 <= constant /// Yes, the force transmitted is scaled by the ratio. /// Warning: the pulley joint can get a bit squirrelly by itself. They often /// work better when combined with prismatic joints. You should also cover the /// the anchor points with static shapes to prevent one side from going to /// zero length. class B2_API b2PulleyJoint : public b2Joint { public: b2Vec2 GetAnchorA() const override; b2Vec2 GetAnchorB() const override; b2Vec2 GetReactionForce(float inv_dt) const override; float GetReactionTorque(float inv_dt) const override; /// Get the first ground anchor. b2Vec2 GetGroundAnchorA() const; /// Get the second ground anchor. b2Vec2 GetGroundAnchorB() const; /// Get the current length of the segment attached to bodyA. float GetLengthA() const; /// Get the current length of the segment attached to bodyB. float GetLengthB() const; /// Get the pulley ratio. float GetRatio() const; /// Get the current length of the segment attached to bodyA. float GetCurrentLengthA() const; /// Get the current length of the segment attached to bodyB. float GetCurrentLengthB() const; /// Dump joint to dmLog void Dump() override; /// Implement b2Joint::ShiftOrigin void ShiftOrigin(const b2Vec2& newOrigin) override; protected: friend class b2Joint; b2PulleyJoint(const b2PulleyJointDef* data); void InitVelocityConstraints(const b2SolverData& data) override; void SolveVelocityConstraints(const b2SolverData& data) override; bool SolvePositionConstraints(const b2SolverData& data) override; b2Vec2 m_groundAnchorA; b2Vec2 m_groundAnchorB; float m_lengthA; float m_lengthB; // Solver shared b2Vec2 m_localAnchorA; b2Vec2 m_localAnchorB; float m_constant; float m_ratio; float m_impulse; // Solver temp int32 m_indexA; int32 m_indexB; b2Vec2 m_uA; b2Vec2 m_uB; b2Vec2 m_rA; b2Vec2 m_rB; b2Vec2 m_localCenterA; b2Vec2 m_localCenterB; float m_invMassA; float m_invMassB; float m_invIA; float m_invIB; float m_mass; }; #endif