// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2022 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions for generating partition tables on demand. */ #include "astcenc_internal.h" /** * @brief Generate a canonical representation of a partition pattern. * * The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store * the remapped texel index. Remapping ensures that we only match on the partition pattern, * independent of the partition order generated by the hash. * * @param texel_count The number of texels in the block. * @param partition_of_texel The partition assignments, in hash order. * @param[out] bit_pattern The output bit pattern representation. */ static void generate_canonical_partitioning( unsigned int texel_count, const uint8_t* partition_of_texel, uint64_t bit_pattern[7] ) { // Clear the pattern for (unsigned int i = 0; i < 7; i++) { bit_pattern[i] = 0; } // Store a mapping to reorder the raw partitions so that the the partitions are ordered such // that the lowest texel index in partition N is smaller than the lowest texel index in // partition N + 1. int mapped_index[BLOCK_MAX_PARTITIONS]; int map_weight_count = 0; for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++) { mapped_index[i] = -1; } for (unsigned int i = 0; i < texel_count; i++) { int index = partition_of_texel[i]; if (mapped_index[index] < 0) { mapped_index[index] = map_weight_count++; } uint64_t xlat_index = mapped_index[index]; bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F)); } } /** * @brief Compare two canonical patterns to see if they are the same. * * @param part1 The first canonical bit pattern to check. * @param part2 The second canonical bit pattern to check. * * @return @c true if the patterns are the same, @c false otherwise. */ static bool compare_canonical_partitionings( const uint64_t part1[7], const uint64_t part2[7] ) { return (part1[0] == part2[0]) && (part1[1] == part2[1]) && (part1[2] == part2[2]) && (part1[3] == part2[3]) && (part1[4] == part2[4]) && (part1[5] == part2[5]) && (part1[6] == part2[6]); } /** * @brief Hash function used for procedural partition assignment. * * @param inp The hash seed. * * @return The hashed value. */ static uint32_t hash52( uint32_t inp ) { inp ^= inp >> 15; // (2^4 + 1) * (2^7 + 1) * (2^17 - 1) inp *= 0xEEDE0891; inp ^= inp >> 5; inp += inp << 16; inp ^= inp >> 7; inp ^= inp >> 3; inp ^= inp << 6; inp ^= inp >> 17; return inp; } /** * @brief Select texel assignment for a single coordinate. * * @param seed The seed - the partition index from the block. * @param x The texel X coordinate in the block. * @param y The texel Y coordinate in the block. * @param z The texel Z coordinate in the block. * @param partition_count The total partition count of this encoding. * @param small_block @c true if the blockhas fewer than 32 texels. * * @return The assigned partition index for this texel. */ static uint8_t select_partition( int seed, int x, int y, int z, int partition_count, bool small_block ) { // For small blocks bias the coordinates to get better distribution if (small_block) { x <<= 1; y <<= 1; z <<= 1; } seed += (partition_count - 1) * 1024; uint32_t rnum = hash52(seed); uint8_t seed1 = rnum & 0xF; uint8_t seed2 = (rnum >> 4) & 0xF; uint8_t seed3 = (rnum >> 8) & 0xF; uint8_t seed4 = (rnum >> 12) & 0xF; uint8_t seed5 = (rnum >> 16) & 0xF; uint8_t seed6 = (rnum >> 20) & 0xF; uint8_t seed7 = (rnum >> 24) & 0xF; uint8_t seed8 = (rnum >> 28) & 0xF; uint8_t seed9 = (rnum >> 18) & 0xF; uint8_t seed10 = (rnum >> 22) & 0xF; uint8_t seed11 = (rnum >> 26) & 0xF; uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; // Squaring all the seeds in order to bias their distribution towards lower values. seed1 *= seed1; seed2 *= seed2; seed3 *= seed3; seed4 *= seed4; seed5 *= seed5; seed6 *= seed6; seed7 *= seed7; seed8 *= seed8; seed9 *= seed9; seed10 *= seed10; seed11 *= seed11; seed12 *= seed12; int sh1, sh2; if (seed & 1) { sh1 = (seed & 2 ? 4 : 5); sh2 = (partition_count == 3 ? 6 : 5); } else { sh1 = (partition_count == 3 ? 6 : 5); sh2 = (seed & 2 ? 4 : 5); } int sh3 = (seed & 0x10) ? sh1 : sh2; seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); // Apply the saw a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F; // Remove some of the components if we are to output < 4 partitions. if (partition_count <= 3) { d = 0; } if (partition_count <= 2) { c = 0; } if (partition_count <= 1) { b = 0; } uint8_t partition; if (a >= b && a >= c && a >= d) { partition = 0; } else if (b >= c && b >= d) { partition = 1; } else if (c >= d) { partition = 2; } else { partition = 3; } return partition; } /** * @brief Generate a single partition info structure. * * @param[out] bsd The block size information. * @param partition_count The partition count of this partitioning. * @param partition_index The partition index / seed of this partitioning. * @param partition_remap_index The remapped partition index of this partitioning. * @param[out] pi The partition info structure to populate. * * @return True if this is a useful partition index, False if we can skip it. */ static bool generate_one_partition_info_entry( block_size_descriptor& bsd, unsigned int partition_count, unsigned int partition_index, unsigned int partition_remap_index, partition_info& pi ) { int texels_per_block = bsd.texel_count; bool small_block = texels_per_block < 32; uint8_t *partition_of_texel = pi.partition_of_texel; // Assign texels to partitions int texel_idx = 0; int counts[BLOCK_MAX_PARTITIONS] { 0 }; for (unsigned int z = 0; z < bsd.zdim; z++) { for (unsigned int y = 0; y < bsd.ydim; y++) { for (unsigned int x = 0; x < bsd.xdim; x++) { uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block); pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++); *partition_of_texel++ = part; } } } // Fill loop tail so we can overfetch later for (unsigned int i = 0; i < partition_count; i++) { int ptex_count = counts[i]; int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count); for (int j = ptex_count; j < ptex_count_simd; j++) { pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1]; } } // Populate the actual procedural partition count if (counts[0] == 0) { pi.partition_count = 0; } else if (counts[1] == 0) { pi.partition_count = 1; } else if (counts[2] == 0) { pi.partition_count = 2; } else if (counts[3] == 0) { pi.partition_count = 3; } else { pi.partition_count = 4; } // Populate the partition index pi.partition_index = static_cast<uint16_t>(partition_index); // Populate the coverage bitmaps for 2/3/4 partitions uint64_t* bitmaps { nullptr }; uint8_t* valids { nullptr }; if (partition_count == 2) { bitmaps = bsd.coverage_bitmaps_2[partition_remap_index]; valids = bsd.partitioning_valid_2; } else if (partition_count == 3) { bitmaps = bsd.coverage_bitmaps_3[partition_remap_index]; valids = bsd.partitioning_valid_3; } else if (partition_count == 4) { bitmaps = bsd.coverage_bitmaps_4[partition_remap_index]; valids = bsd.partitioning_valid_4; } for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++) { pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]); } // Valid partitionings have texels in all of the requested partitions bool valid = pi.partition_count == partition_count; if (bitmaps) { // Populate the bitmap validity mask valids[partition_remap_index] = valid ? 0 : 255; for (unsigned int i = 0; i < partition_count; i++) { bitmaps[i] = 0ULL; } unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS); for (unsigned int i = 0; i < texels_to_process; i++) { unsigned int idx = bsd.kmeans_texels[i]; bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i; } } return valid; } static void build_partition_table_for_one_partition_count( block_size_descriptor& bsd, bool can_omit_partitionings, unsigned int partition_count_cutoff, unsigned int partition_count, partition_info* ptab, uint64_t* canonical_patterns ) { uint8_t* partitioning_valid[3] { bsd.partitioning_valid_2, bsd.partitioning_valid_3, bsd.partitioning_valid_4 }; unsigned int next_index = 0; bsd.partitioning_count_selected[partition_count - 1] = 0; bsd.partitioning_count_all[partition_count - 1] = 0; // Skip tables larger than config max partition count if we can omit modes if (can_omit_partitionings && (partition_count > partition_count_cutoff)) { return; } // Iterate through twice // - Pass 0: Keep selected partitionings // - Pass 1: Keep non-selected partitionings (skip if in omit mode) unsigned int max_iter = can_omit_partitionings ? 1 : 2; // Tracker for things we built in the first iteration uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 }; for (unsigned int x = 0; x < max_iter; x++) { for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++) { // Don't include things we built in the first pass if ((x == 1) && build[i]) { continue; } bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]); if ((x == 0) && !keep_useful) { continue; } generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * 7); bool keep_canonical = true; for (unsigned int j = 0; j < next_index; j++) { bool match = compare_canonical_partitionings(canonical_patterns + 7 * next_index, canonical_patterns + 7 * j); if (match) { keep_canonical = false; break; } } if (keep_useful && keep_canonical) { if (x == 0) { bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index); bsd.partitioning_count_selected[partition_count - 1]++; bsd.partitioning_count_all[partition_count - 1]++; build[i] = 1; next_index++; } } else { if (x == 1) { bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index); bsd.partitioning_count_all[partition_count - 1]++; partitioning_valid[partition_count - 2][next_index] = 255; next_index++; } } } } } /* See header for documentation. */ void init_partition_tables( block_size_descriptor& bsd, bool can_omit_partitionings, unsigned int partition_count_cutoff ) { partition_info* par_tab2 = bsd.partitionings; partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS; partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS; partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS; generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1); bsd.partitioning_count_selected[0] = 1; bsd.partitioning_count_all[0] = 1; uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * 7]; build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns); build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns); build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns); delete[] canonical_patterns; }