/******************************************************************************* * Author : Angus Johnson * * Version : Clipper2 - ver.1.0.4 * * Date : 4 September 2022 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2022 * * Purpose : This is the main polygon clipping module * * License : http://www.boost.org/LICENSE_1_0.txt * *******************************************************************************/ #ifndef clipper_engine_h #define clipper_engine_h #define CLIPPER2_VERSION "1.0.0" #include #include #include #include #include #include "clipper.core.h" namespace Clipper2Lib { struct Scanline; struct IntersectNode; struct Active; struct Vertex; struct LocalMinima; struct OutRec; struct Joiner; //Note: all clipping operations except for Difference are commutative. enum class ClipType { None, Intersection, Union, Difference, Xor }; enum class PathType { Subject, Clip }; enum class VertexFlags : uint32_t { None = 0, OpenStart = 1, OpenEnd = 2, LocalMax = 4, LocalMin = 8 }; constexpr enum VertexFlags operator &(enum VertexFlags a, enum VertexFlags b) { return (enum VertexFlags)(uint32_t(a) & uint32_t(b)); } constexpr enum VertexFlags operator |(enum VertexFlags a, enum VertexFlags b) { return (enum VertexFlags)(uint32_t(a) | uint32_t(b)); } struct Vertex { Point64 pt; Vertex* next = nullptr; Vertex* prev = nullptr; VertexFlags flags = VertexFlags::None; }; struct OutPt { Point64 pt; OutPt* next = nullptr; OutPt* prev = nullptr; OutRec* outrec; Joiner* joiner = nullptr; OutPt(const Point64& pt_, OutRec* outrec_): pt(pt_), outrec(outrec_) { next = this; prev = this; } }; template class PolyPath; using PolyPath64 = PolyPath; using PolyPathD = PolyPath; template using PolyTree = PolyPath; using PolyTree64 = PolyTree; using PolyTreeD = PolyTree; struct OutRec; typedef std::vector OutRecList; //OutRec: contains a path in the clipping solution. Edges in the AEL will //have OutRec pointers assigned when they form part of the clipping solution. struct OutRec { size_t idx = 0; OutRec* owner = nullptr; OutRecList* splits = nullptr; Active* front_edge = nullptr; Active* back_edge = nullptr; OutPt* pts = nullptr; PolyPath64* polypath = nullptr; Rect64 bounds = {}; Path64 path; bool is_open = false; ~OutRec() { if (splits) delete splits; }; }; /////////////////////////////////////////////////////////////////// //Important: UP and DOWN here are premised on Y-axis positive down //displays, which is the orientation used in Clipper's development. /////////////////////////////////////////////////////////////////// struct Active { Point64 bot; Point64 top; int64_t curr_x = 0; //current (updated at every new scanline) double dx = 0.0; int wind_dx = 1; //1 or -1 depending on winding direction int wind_cnt = 0; int wind_cnt2 = 0; //winding count of the opposite polytype OutRec* outrec = nullptr; //AEL: 'active edge list' (Vatti's AET - active edge table) // a linked list of all edges (from left to right) that are present // (or 'active') within the current scanbeam (a horizontal 'beam' that // sweeps from bottom to top over the paths in the clipping operation). Active* prev_in_ael = nullptr; Active* next_in_ael = nullptr; //SEL: 'sorted edge list' (Vatti's ST - sorted table) // linked list used when sorting edges into their new positions at the // top of scanbeams, but also (re)used to process horizontals. Active* prev_in_sel = nullptr; Active* next_in_sel = nullptr; Active* jump = nullptr; Vertex* vertex_top = nullptr; LocalMinima* local_min = nullptr; // the bottom of an edge 'bound' (also Vatti) bool is_left_bound = false; }; struct LocalMinima { Vertex* vertex; PathType polytype; bool is_open; LocalMinima(Vertex* v, PathType pt, bool open) : vertex(v), polytype(pt), is_open(open){} }; struct IntersectNode { Point64 pt; Active* edge1; Active* edge2; IntersectNode() : pt(Point64(0, 0)), edge1(NULL), edge2(NULL) {} IntersectNode(Active* e1, Active* e2, Point64& pt_) : pt(pt_), edge1(e1), edge2(e2) { } }; #ifdef USINGZ typedef std::function ZCallback64; typedef std::function ZCallbackD; #endif // ClipperBase ------------------------------------------------------------- class ClipperBase { private: ClipType cliptype_ = ClipType::None; FillRule fillrule_ = FillRule::EvenOdd; FillRule fillpos = FillRule::Positive; int64_t bot_y_ = 0; bool has_open_paths_ = false; bool minima_list_sorted_ = false; bool using_polytree_ = false; bool succeeded_ = true; Active *actives_ = nullptr; Active *sel_ = nullptr; Joiner *horz_joiners_ = nullptr; std::vector minima_list_; //pointers in case of memory reallocs std::vector::iterator current_locmin_iter_; std::vector vertex_lists_; std::priority_queue scanline_list_; std::vector intersect_nodes_; std::vector outrec_list_; //pointers in case of memory reallocs std::vector joiner_list_; //pointers in case of memory reallocs void Reset(); void InsertScanline(int64_t y); bool PopScanline(int64_t &y); bool PopLocalMinima(int64_t y, LocalMinima *&local_minima); void DisposeAllOutRecs(); void DisposeVerticesAndLocalMinima(); void AddLocMin(Vertex &vert, PathType polytype, bool is_open); bool IsContributingClosed(const Active &e) const; inline bool IsContributingOpen(const Active &e) const; void SetWindCountForClosedPathEdge(Active &edge); void SetWindCountForOpenPathEdge(Active &e); void InsertLocalMinimaIntoAEL(int64_t bot_y); void InsertLeftEdge(Active &e); inline void PushHorz(Active &e); inline bool PopHorz(Active *&e); inline OutPt* StartOpenPath(Active &e, const Point64& pt); inline void UpdateEdgeIntoAEL(Active *e); OutPt* IntersectEdges(Active &e1, Active &e2, const Point64& pt); inline void DeleteFromAEL(Active &e); inline void AdjustCurrXAndCopyToSEL(const int64_t top_y); void DoIntersections(const int64_t top_y); void AddNewIntersectNode(Active &e1, Active &e2, const int64_t top_y); bool BuildIntersectList(const int64_t top_y); void ProcessIntersectList(); void SwapPositionsInAEL(Active& edge1, Active& edge2); OutPt* AddOutPt(const Active &e, const Point64& pt); OutPt* AddLocalMinPoly(Active &e1, Active &e2, const Point64& pt, bool is_new = false); OutPt* AddLocalMaxPoly(Active &e1, Active &e2, const Point64& pt); void DoHorizontal(Active &horz); bool ResetHorzDirection(const Active &horz, const Active *max_pair, int64_t &horz_left, int64_t &horz_right); void DoTopOfScanbeam(const int64_t top_y); Active *DoMaxima(Active &e); void JoinOutrecPaths(Active &e1, Active &e2); void CompleteSplit(OutPt* op1, OutPt* op2, OutRec& outrec); bool ValidateClosedPathEx(OutPt*& outrec); void CleanCollinear(OutRec* outrec); void FixSelfIntersects(OutRec* outrec); OutPt* DoSplitOp(OutPt* outRecOp, OutPt* splitOp); Joiner* GetHorzTrialParent(const OutPt* op); bool OutPtInTrialHorzList(OutPt* op); void SafeDisposeOutPts(OutPt*& op); void SafeDeleteOutPtJoiners(OutPt* op); void AddTrialHorzJoin(OutPt* op); void DeleteTrialHorzJoin(OutPt* op); void ConvertHorzTrialsToJoins(); void AddJoin(OutPt* op1, OutPt* op2); void DeleteJoin(Joiner* joiner); void ProcessJoinerList(); OutRec* ProcessJoin(Joiner* joiner); bool ExecuteInternal(ClipType ct, FillRule ft, bool use_polytrees); bool DeepCheckOwner(OutRec* outrec, OutRec* owner); void BuildPaths(Paths64& solutionClosed, Paths64* solutionOpen); void BuildTree(PolyPath64& polytree, Paths64& open_paths); protected: #ifdef USINGZ ZCallback64 zCallback_ = nullptr; void SetZ(const Active& e1, const Active& e2, Point64& pt); #endif void CleanUp(); // unlike Clear, CleanUp preserves added paths void AddPath(const Path64& path, PathType polytype, bool is_open); void AddPaths(const Paths64& paths, PathType polytype, bool is_open); bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& solution_closed); bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& solution_closed, Paths64& solution_open); bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree); bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree, Paths64& open_paths); public: virtual ~ClipperBase(); bool PreserveCollinear = true; bool ReverseSolution = false; void Clear(); }; // PolyPath / PolyTree -------------------------------------------------------- //PolyTree: is intended as a READ-ONLY data structure for CLOSED paths returned //by clipping operations. While this structure is more complex than the //alternative Paths structure, it does preserve path 'ownership' - ie those //paths that contain (or own) other paths. This will be useful to some users. template class PolyPath final { private: double scale_; Path polygon_; std::vector childs_; protected: const PolyPath* parent_; PolyPath(const PolyPath* parent, const Path& path) : scale_(parent->scale_), polygon_(path), parent_(parent){} public: explicit PolyPath(int precision = 0) // NB only for root node { scale_ = std::pow(10, precision); parent_ = nullptr; } ~PolyPath() { Clear(); }; //https://en.cppreference.com/w/cpp/language/rule_of_three PolyPath(const PolyPath&) = delete; PolyPath& operator=(const PolyPath&) = delete; PolyPath* operator [] (size_t index) { return childs_[index]; } typename std::vector::const_iterator begin() const { return childs_.cbegin(); } typename std::vector::const_iterator end() const { return childs_.cend(); } void Clear() { for (PolyPath* child : childs_) delete child; childs_.resize(0); } void reserve(size_t size) { if (size > childs_.size()) childs_.reserve(size); } PolyPath* AddChild(const Path& path) { childs_.push_back(new PolyPath(this, path)); return childs_.back(); } size_t Count() const { return childs_.size(); } const PolyPath* parent() const { return parent_; } bool IsHole() const { const PolyPath* pp = parent_; bool is_hole = pp; while (pp) { is_hole = !is_hole; pp = pp->parent_; } return is_hole; } const Path& Polygon() const { return polygon_; } double Area() const { double result = Clipper2Lib::Area(polygon_); for (const PolyPath* child : childs_) result += child->Area(); return result; } }; void Polytree64ToPolytreeD(const PolyPath64& polytree, PolyPathD& result); class Clipper64 : public ClipperBase { public: #ifdef USINGZ void SetZCallback(ZCallback64 cb) { zCallback_ = cb; } #endif void AddSubject(const Paths64& subjects) { AddPaths(subjects, PathType::Subject, false); } void AddOpenSubject(const Paths64& open_subjects) { AddPaths(open_subjects, PathType::Subject, true); } void AddClip(const Paths64& clips) { AddPaths(clips, PathType::Clip, false); } bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& closed_paths) { return ClipperBase::Execute(clip_type, fill_rule, closed_paths); } bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& closed_paths, Paths64& open_paths) { return ClipperBase::Execute(clip_type, fill_rule, closed_paths, open_paths); } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree) { return ClipperBase::Execute(clip_type, fill_rule, polytree); } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree, Paths64& open_paths) { return ClipperBase::Execute(clip_type, fill_rule, polytree, open_paths); } }; class ClipperD : public ClipperBase { private: double scale_ = 1.0, invScale_ = 1.0; #ifdef USINGZ ZCallbackD zCallback_ = nullptr; #endif public: explicit ClipperD(int precision = 2) : ClipperBase() { scale_ = std::pow(10, precision); invScale_ = 1 / scale_; } #ifdef USINGZ void SetZCallback(ZCallbackD cb) { zCallback_ = cb; }; void ZCB(const Point64& e1bot, const Point64& e1top, const Point64& e2bot, const Point64& e2top, Point64& pt) { // de-scale (x & y) // temporarily convert integers to their initial float values // this will slow clipping marginally but will make it much easier // to understand the coordinates passed to the callback function PointD tmp = PointD(pt) * invScale_; PointD e1b = PointD(e1bot) * invScale_; PointD e1t = PointD(e1top) * invScale_; PointD e2b = PointD(e2bot) * invScale_; PointD e2t = PointD(e2top) * invScale_; zCallback_(e1b,e1t, e2b, e2t, tmp); pt.z = tmp.z; // only update 'z' }; void CheckCallback() { if(zCallback_) // if the user defined float point callback has been assigned // then assign the proxy callback function ClipperBase::zCallback_ = std::bind(&ClipperD::ZCB, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5); else ClipperBase::zCallback_ = nullptr; } #endif void AddSubject(const PathsD& subjects) { AddPaths(ScalePaths(subjects, scale_), PathType::Subject, false); } void AddOpenSubject(const PathsD& open_subjects) { AddPaths(ScalePaths(open_subjects, scale_), PathType::Subject, true); } void AddClip(const PathsD& clips) { AddPaths(ScalePaths(clips, scale_), PathType::Clip, false); } bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths) { #ifdef USINGZ CheckCallback(); #endif Paths64 closed_paths64; if (!ClipperBase::Execute(clip_type, fill_rule, closed_paths64)) return false; closed_paths = ScalePaths(closed_paths64, invScale_); return true; } bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths, PathsD& open_paths) { #ifdef USINGZ CheckCallback(); #endif Paths64 closed_paths64; Paths64 open_paths64; if (!ClipperBase::Execute(clip_type, fill_rule, closed_paths64, open_paths64)) return false; closed_paths = ScalePaths(closed_paths64, invScale_); open_paths = ScalePaths(open_paths64, invScale_); return true; } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree) { #ifdef USINGZ CheckCallback(); #endif PolyTree64 tree_result; if (!ClipperBase::Execute(clip_type, fill_rule, tree_result)) return false;; Polytree64ToPolytreeD(tree_result, polytree); return true; } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree, Paths64& open_paths) { #ifdef USINGZ CheckCallback(); #endif PolyTree64 tree_result; if (!ClipperBase::Execute(clip_type, fill_rule, tree_result, open_paths)) return false;; Polytree64ToPolytreeD(tree_result, polytree); return true; } }; } // namespace #endif // clipper_engine_h