/** * OpenAL cross platform audio library * Copyright (C) 2009 by Konstantinos Natsakis * Copyright (C) 2010 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "pulseaudio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "albyte.h" #include "alc/alconfig.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "core/devformat.h" #include "core/device.h" #include "core/logging.h" #include "dynload.h" #include "opthelpers.h" #include "strutils.h" #include "vector.h" #include namespace { using uint = unsigned int; #ifdef HAVE_DYNLOAD #define PULSE_FUNCS(MAGIC) \ MAGIC(pa_context_new); \ MAGIC(pa_context_unref); \ MAGIC(pa_context_get_state); \ MAGIC(pa_context_disconnect); \ MAGIC(pa_context_set_state_callback); \ MAGIC(pa_context_errno); \ MAGIC(pa_context_connect); \ MAGIC(pa_context_get_server_info); \ MAGIC(pa_context_get_sink_info_by_name); \ MAGIC(pa_context_get_sink_info_list); \ MAGIC(pa_context_get_source_info_by_name); \ MAGIC(pa_context_get_source_info_list); \ MAGIC(pa_stream_new); \ MAGIC(pa_stream_unref); \ MAGIC(pa_stream_drop); \ MAGIC(pa_stream_get_state); \ MAGIC(pa_stream_peek); \ MAGIC(pa_stream_write); \ MAGIC(pa_stream_connect_record); \ MAGIC(pa_stream_connect_playback); \ MAGIC(pa_stream_readable_size); \ MAGIC(pa_stream_writable_size); \ MAGIC(pa_stream_is_corked); \ MAGIC(pa_stream_cork); \ MAGIC(pa_stream_is_suspended); \ MAGIC(pa_stream_get_device_name); \ MAGIC(pa_stream_get_latency); \ MAGIC(pa_stream_set_write_callback); \ MAGIC(pa_stream_set_buffer_attr); \ MAGIC(pa_stream_get_buffer_attr); \ MAGIC(pa_stream_get_sample_spec); \ MAGIC(pa_stream_get_time); \ MAGIC(pa_stream_set_read_callback); \ MAGIC(pa_stream_set_state_callback); \ MAGIC(pa_stream_set_moved_callback); \ MAGIC(pa_stream_set_underflow_callback); \ MAGIC(pa_stream_new_with_proplist); \ MAGIC(pa_stream_disconnect); \ MAGIC(pa_stream_set_buffer_attr_callback); \ MAGIC(pa_stream_begin_write); \ MAGIC(pa_threaded_mainloop_free); \ MAGIC(pa_threaded_mainloop_get_api); \ MAGIC(pa_threaded_mainloop_lock); \ MAGIC(pa_threaded_mainloop_new); \ MAGIC(pa_threaded_mainloop_signal); \ MAGIC(pa_threaded_mainloop_start); \ MAGIC(pa_threaded_mainloop_stop); \ MAGIC(pa_threaded_mainloop_unlock); \ MAGIC(pa_threaded_mainloop_wait); \ MAGIC(pa_channel_map_init_auto); \ MAGIC(pa_channel_map_parse); \ MAGIC(pa_channel_map_snprint); \ MAGIC(pa_channel_map_equal); \ MAGIC(pa_channel_map_superset); \ MAGIC(pa_channel_position_to_string); \ MAGIC(pa_operation_get_state); \ MAGIC(pa_operation_unref); \ MAGIC(pa_sample_spec_valid); \ MAGIC(pa_frame_size); \ MAGIC(pa_strerror); \ MAGIC(pa_path_get_filename); \ MAGIC(pa_get_binary_name); \ MAGIC(pa_xmalloc); \ MAGIC(pa_xfree); void *pulse_handle; #define MAKE_FUNC(x) decltype(x) * p##x PULSE_FUNCS(MAKE_FUNC) #undef MAKE_FUNC #ifndef IN_IDE_PARSER #define pa_context_new ppa_context_new #define pa_context_unref ppa_context_unref #define pa_context_get_state ppa_context_get_state #define pa_context_disconnect ppa_context_disconnect #define pa_context_set_state_callback ppa_context_set_state_callback #define pa_context_errno ppa_context_errno #define pa_context_connect ppa_context_connect #define pa_context_get_server_info ppa_context_get_server_info #define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name #define pa_context_get_sink_info_list ppa_context_get_sink_info_list #define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name #define pa_context_get_source_info_list ppa_context_get_source_info_list #define pa_stream_new ppa_stream_new #define pa_stream_unref ppa_stream_unref #define pa_stream_disconnect ppa_stream_disconnect #define pa_stream_drop ppa_stream_drop #define pa_stream_set_write_callback ppa_stream_set_write_callback #define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr #define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr #define pa_stream_get_sample_spec ppa_stream_get_sample_spec #define pa_stream_get_time ppa_stream_get_time #define pa_stream_set_read_callback ppa_stream_set_read_callback #define pa_stream_set_state_callback ppa_stream_set_state_callback #define pa_stream_set_moved_callback ppa_stream_set_moved_callback #define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback #define pa_stream_connect_record ppa_stream_connect_record #define pa_stream_connect_playback ppa_stream_connect_playback #define pa_stream_readable_size ppa_stream_readable_size #define pa_stream_writable_size ppa_stream_writable_size #define pa_stream_is_corked ppa_stream_is_corked #define pa_stream_cork ppa_stream_cork #define pa_stream_is_suspended ppa_stream_is_suspended #define pa_stream_get_device_name ppa_stream_get_device_name #define pa_stream_get_latency ppa_stream_get_latency #define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback #define pa_stream_begin_write ppa_stream_begin_write #define pa_threaded_mainloop_free ppa_threaded_mainloop_free #define pa_threaded_mainloop_get_api ppa_threaded_mainloop_get_api #define pa_threaded_mainloop_lock ppa_threaded_mainloop_lock #define pa_threaded_mainloop_new ppa_threaded_mainloop_new #define pa_threaded_mainloop_signal ppa_threaded_mainloop_signal #define pa_threaded_mainloop_start ppa_threaded_mainloop_start #define pa_threaded_mainloop_stop ppa_threaded_mainloop_stop #define pa_threaded_mainloop_unlock ppa_threaded_mainloop_unlock #define pa_threaded_mainloop_wait ppa_threaded_mainloop_wait #define pa_channel_map_init_auto ppa_channel_map_init_auto #define pa_channel_map_parse ppa_channel_map_parse #define pa_channel_map_snprint ppa_channel_map_snprint #define pa_channel_map_equal ppa_channel_map_equal #define pa_channel_map_superset ppa_channel_map_superset #define pa_channel_position_to_string ppa_channel_position_to_string #define pa_operation_get_state ppa_operation_get_state #define pa_operation_unref ppa_operation_unref #define pa_sample_spec_valid ppa_sample_spec_valid #define pa_frame_size ppa_frame_size #define pa_strerror ppa_strerror #define pa_stream_get_state ppa_stream_get_state #define pa_stream_peek ppa_stream_peek #define pa_stream_write ppa_stream_write #define pa_xfree ppa_xfree #define pa_path_get_filename ppa_path_get_filename #define pa_get_binary_name ppa_get_binary_name #define pa_xmalloc ppa_xmalloc #endif /* IN_IDE_PARSER */ #endif constexpr pa_channel_map MonoChanMap{ 1, {PA_CHANNEL_POSITION_MONO} }, StereoChanMap{ 2, {PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT} }, QuadChanMap{ 4, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } }, X51ChanMap{ 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }, X51RearChanMap{ 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } }, X61ChanMap{ 7, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_CENTER, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }, X71ChanMap{ 8, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }, X714ChanMap{ 12, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT, PA_CHANNEL_POSITION_TOP_FRONT_LEFT, PA_CHANNEL_POSITION_TOP_FRONT_RIGHT, PA_CHANNEL_POSITION_TOP_REAR_LEFT, PA_CHANNEL_POSITION_TOP_REAR_RIGHT } }; /* *grumble* Don't use enums for bitflags. */ constexpr pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs) { return pa_stream_flags_t(lhs | al::to_underlying(rhs)); } constexpr pa_stream_flags_t& operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs) { lhs = lhs | rhs; return lhs; } constexpr pa_stream_flags_t operator~(pa_stream_flags_t flag) { return pa_stream_flags_t(~al::to_underlying(flag)); } constexpr pa_stream_flags_t& operator&=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs) { lhs = pa_stream_flags_t(al::to_underlying(lhs) & rhs); return lhs; } constexpr pa_context_flags_t operator|(pa_context_flags_t lhs, pa_context_flags_t rhs) { return pa_context_flags_t(lhs | al::to_underlying(rhs)); } constexpr pa_context_flags_t& operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs) { lhs = lhs | rhs; return lhs; } struct DevMap { std::string name; std::string device_name; }; bool checkName(const al::span list, const std::string &name) { auto match_name = [&name](const DevMap &entry) -> bool { return entry.name == name; }; return std::find_if(list.cbegin(), list.cend(), match_name) != list.cend(); } al::vector PlaybackDevices; al::vector CaptureDevices; /* Global flags and properties */ pa_context_flags_t pulse_ctx_flags; class PulseMainloop { pa_threaded_mainloop *mLoop{}; public: PulseMainloop() = default; PulseMainloop(const PulseMainloop&) = delete; PulseMainloop(PulseMainloop&& rhs) noexcept : mLoop{rhs.mLoop} { rhs.mLoop = nullptr; } explicit PulseMainloop(pa_threaded_mainloop *loop) noexcept : mLoop{loop} { } ~PulseMainloop() { if(mLoop) pa_threaded_mainloop_free(mLoop); } PulseMainloop& operator=(const PulseMainloop&) = delete; PulseMainloop& operator=(PulseMainloop&& rhs) noexcept { std::swap(mLoop, rhs.mLoop); return *this; } PulseMainloop& operator=(std::nullptr_t) noexcept { if(mLoop) pa_threaded_mainloop_free(mLoop); mLoop = nullptr; return *this; } explicit operator bool() const noexcept { return mLoop != nullptr; } auto start() const { return pa_threaded_mainloop_start(mLoop); } auto stop() const { return pa_threaded_mainloop_stop(mLoop); } auto getApi() const { return pa_threaded_mainloop_get_api(mLoop); } auto lock() const { return pa_threaded_mainloop_lock(mLoop); } auto unlock() const { return pa_threaded_mainloop_unlock(mLoop); } auto signal(bool wait=false) const { return pa_threaded_mainloop_signal(mLoop, wait); } static auto Create() { return PulseMainloop{pa_threaded_mainloop_new()}; } void streamSuccessCallback(pa_stream*, int) noexcept { signal(); } static void streamSuccessCallbackC(pa_stream *stream, int success, void *pdata) noexcept { static_cast(pdata)->streamSuccessCallback(stream, success); } void close(pa_context *context, pa_stream *stream=nullptr); void deviceSinkCallback(pa_context*, const pa_sink_info *info, int eol) noexcept { if(eol) { signal(); return; } /* Skip this device is if it's already in the list. */ auto match_devname = [info](const DevMap &entry) -> bool { return entry.device_name == info->name; }; if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), match_devname) != PlaybackDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(PlaybackDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } PlaybackDevices.emplace_back(DevMap{std::move(newname), info->name}); DevMap &newentry = PlaybackDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void deviceSourceCallback(pa_context*, const pa_source_info *info, int eol) noexcept { if(eol) { signal(); return; } /* Skip this device is if it's already in the list. */ auto match_devname = [info](const DevMap &entry) -> bool { return entry.device_name == info->name; }; if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), match_devname) != CaptureDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(CaptureDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } CaptureDevices.emplace_back(DevMap{std::move(newname), info->name}); DevMap &newentry = CaptureDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void probePlaybackDevices(); void probeCaptureDevices(); friend struct MainloopUniqueLock; }; struct MainloopUniqueLock : public std::unique_lock { using std::unique_lock::unique_lock; MainloopUniqueLock& operator=(MainloopUniqueLock&&) = default; auto wait() const -> void { pa_threaded_mainloop_wait(mutex()->mLoop); } template auto wait(Predicate done_waiting) const -> void { while(!done_waiting()) wait(); } void waitForOperation(pa_operation *op) { if(op) { wait([op]{ return pa_operation_get_state(op) != PA_OPERATION_RUNNING; }); pa_operation_unref(op); } } void contextStateCallback(pa_context *context) noexcept { pa_context_state_t state{pa_context_get_state(context)}; if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state)) mutex()->signal(); } void streamStateCallback(pa_stream *stream) noexcept { pa_stream_state_t state{pa_stream_get_state(stream)}; if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state)) mutex()->signal(); } pa_context *connectContext(); pa_stream *connectStream(const char *device_name, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type); }; using MainloopLockGuard = std::lock_guard; pa_context *MainloopUniqueLock::connectContext() { pa_context *context{pa_context_new(mutex()->getApi(), nullptr)}; if(!context) throw al::backend_exception{al::backend_error::OutOfMemory, "pa_context_new() failed"}; pa_context_set_state_callback(context, [](pa_context *ctx, void *pdata) noexcept { return static_cast(pdata)->contextStateCallback(ctx); }, this); int err; if((err=pa_context_connect(context, nullptr, pulse_ctx_flags, nullptr)) >= 0) { pa_context_state_t state; while((state=pa_context_get_state(context)) != PA_CONTEXT_READY) { if(!PA_CONTEXT_IS_GOOD(state)) { err = pa_context_errno(context); if(err > 0) err = -err; break; } wait(); } } pa_context_set_state_callback(context, nullptr, nullptr); if(err < 0) { pa_context_unref(context); throw al::backend_exception{al::backend_error::DeviceError, "Context did not connect (%s)", pa_strerror(err)}; } return context; } pa_stream *MainloopUniqueLock::connectStream(const char *device_name, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type) { const char *stream_id{(type==BackendType::Playback) ? "Playback Stream" : "Capture Stream"}; pa_stream *stream{pa_stream_new(context, stream_id, spec, chanmap)}; if(!stream) throw al::backend_exception{al::backend_error::OutOfMemory, "pa_stream_new() failed (%s)", pa_strerror(pa_context_errno(context))}; pa_stream_set_state_callback(stream, [](pa_stream *strm, void *pdata) noexcept { return static_cast(pdata)->streamStateCallback(strm); }, this); int err{(type==BackendType::Playback) ? pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) : pa_stream_connect_record(stream, device_name, attr, flags)}; if(err < 0) { pa_stream_unref(stream); throw al::backend_exception{al::backend_error::DeviceError, "%s did not connect (%s)", stream_id, pa_strerror(err)}; } pa_stream_state_t state; while((state=pa_stream_get_state(stream)) != PA_STREAM_READY) { if(!PA_STREAM_IS_GOOD(state)) { err = pa_context_errno(context); pa_stream_unref(stream); throw al::backend_exception{al::backend_error::DeviceError, "%s did not get ready (%s)", stream_id, pa_strerror(err)}; } wait(); } pa_stream_set_state_callback(stream, nullptr, nullptr); return stream; } void PulseMainloop::close(pa_context *context, pa_stream *stream) { MainloopUniqueLock _{*this}; if(stream) { pa_stream_set_state_callback(stream, nullptr, nullptr); pa_stream_set_moved_callback(stream, nullptr, nullptr); pa_stream_set_write_callback(stream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr); pa_stream_disconnect(stream); pa_stream_unref(stream); } pa_context_disconnect(context); pa_context_unref(context); } void PulseMainloop::probePlaybackDevices() { pa_context *context{}; PlaybackDevices.clear(); try { MainloopUniqueLock plock{*this}; auto sink_callback = [](pa_context *ctx, const pa_sink_info *info, int eol, void *pdata) noexcept { return static_cast(pdata)->deviceSinkCallback(ctx, info, eol); }; context = plock.connectContext(); pa_operation *op{pa_context_get_sink_info_by_name(context, nullptr, sink_callback, this)}; plock.waitForOperation(op); op = pa_context_get_sink_info_list(context, sink_callback, this); plock.waitForOperation(op); pa_context_disconnect(context); pa_context_unref(context); context = nullptr; } catch(std::exception &e) { ERR("Error enumerating devices: %s\n", e.what()); if(context) close(context); } } void PulseMainloop::probeCaptureDevices() { pa_context *context{}; CaptureDevices.clear(); try { MainloopUniqueLock plock{*this}; auto src_callback = [](pa_context *ctx, const pa_source_info *info, int eol, void *pdata) noexcept { return static_cast(pdata)->deviceSourceCallback(ctx, info, eol); }; context = plock.connectContext(); pa_operation *op{pa_context_get_source_info_by_name(context, nullptr, src_callback, this)}; plock.waitForOperation(op); op = pa_context_get_source_info_list(context, src_callback, this); plock.waitForOperation(op); pa_context_disconnect(context); pa_context_unref(context); context = nullptr; } catch(std::exception &e) { ERR("Error enumerating devices: %s\n", e.what()); if(context) close(context); } } /* Used for initial connection test and enumeration. */ PulseMainloop gGlobalMainloop; struct PulsePlayback final : public BackendBase { PulsePlayback(DeviceBase *device) noexcept : BackendBase{device} { } ~PulsePlayback() override; void bufferAttrCallback(pa_stream *stream) noexcept; void streamStateCallback(pa_stream *stream) noexcept; void streamWriteCallback(pa_stream *stream, size_t nbytes) noexcept; void sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol) noexcept; void sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol) noexcept; void streamMovedCallback(pa_stream *stream) noexcept; void open(const char *name) override; bool reset() override; void start() override; void stop() override; ClockLatency getClockLatency() override; PulseMainloop mMainloop; al::optional mDeviceName{al::nullopt}; bool mIs51Rear{false}; pa_buffer_attr mAttr; pa_sample_spec mSpec; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; uint mFrameSize{0u}; DEF_NEWDEL(PulsePlayback) }; PulsePlayback::~PulsePlayback() { if(!mContext) return; mMainloop.close(mContext, mStream); mContext = nullptr; mStream = nullptr; } void PulsePlayback::bufferAttrCallback(pa_stream *stream) noexcept { /* FIXME: Update the device's UpdateSize (and/or BufferSize) using the new * buffer attributes? Changing UpdateSize will change the ALC_REFRESH * property, which probably shouldn't change between device resets. But * leaving it alone means ALC_REFRESH will be off. */ mAttr = *(pa_stream_get_buffer_attr(stream)); TRACE("minreq=%d, tlength=%d, prebuf=%d\n", mAttr.minreq, mAttr.tlength, mAttr.prebuf); } void PulsePlayback::streamStateCallback(pa_stream *stream) noexcept { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); mDevice->handleDisconnect("Playback stream failure"); } mMainloop.signal(); } void PulsePlayback::streamWriteCallback(pa_stream *stream, size_t nbytes) noexcept { do { pa_free_cb_t free_func{nullptr}; auto buflen = static_cast(-1); void *buf{}; if(pa_stream_begin_write(stream, &buf, &buflen) || !buf) [[unlikely]] { buflen = nbytes; buf = pa_xmalloc(buflen); free_func = pa_xfree; } else buflen = minz(buflen, nbytes); nbytes -= buflen; mDevice->renderSamples(buf, static_cast(buflen/mFrameSize), mSpec.channels); int ret{pa_stream_write(stream, buf, buflen, free_func, 0, PA_SEEK_RELATIVE)}; if(ret != PA_OK) [[unlikely]] ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret)); } while(nbytes > 0); } void PulsePlayback::sinkInfoCallback(pa_context*, const pa_sink_info *info, int eol) noexcept { struct ChannelMap { DevFmtChannels fmt; pa_channel_map map; bool is_51rear; }; static constexpr std::array chanmaps{{ { DevFmtX714, X714ChanMap, false }, { DevFmtX71, X71ChanMap, false }, { DevFmtX61, X61ChanMap, false }, { DevFmtX51, X51ChanMap, false }, { DevFmtX51, X51RearChanMap, true }, { DevFmtQuad, QuadChanMap, false }, { DevFmtStereo, StereoChanMap, false }, { DevFmtMono, MonoChanMap, false } }}; if(eol) { mMainloop.signal(); return; } auto chaniter = std::find_if(chanmaps.cbegin(), chanmaps.cend(), [info](const ChannelMap &chanmap) -> bool { return pa_channel_map_superset(&info->channel_map, &chanmap.map); } ); if(chaniter != chanmaps.cend()) { if(!mDevice->Flags.test(ChannelsRequest)) mDevice->FmtChans = chaniter->fmt; mIs51Rear = chaniter->is_51rear; } else { mIs51Rear = false; char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{}; pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map); WARN("Failed to find format for channel map:\n %s\n", chanmap_str); } if(info->active_port) TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description); mDevice->Flags.set(DirectEar, (info->active_port && strcmp(info->active_port->name, "analog-output-headphones") == 0)); } void PulsePlayback::sinkNameCallback(pa_context*, const pa_sink_info *info, int eol) noexcept { if(eol) { mMainloop.signal(); return; } mDevice->DeviceName = info->description; } void PulsePlayback::streamMovedCallback(pa_stream *stream) noexcept { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName->c_str()); } void PulsePlayback::open(const char *name) { mMainloop = PulseMainloop::Create(); mMainloop.start(); const char *pulse_name{nullptr}; const char *dev_name{nullptr}; if(name) { if(PlaybackDevices.empty()) mMainloop.probePlaybackDevices(); auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; }); if(iter == PlaybackDevices.cend()) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found", name}; pulse_name = iter->device_name.c_str(); dev_name = iter->name.c_str(); } MainloopUniqueLock plock{mMainloop}; mContext = plock.connectContext(); pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true)) flags |= PA_STREAM_DONT_MOVE; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; if(!pulse_name) { static const auto defname = al::getenv("ALSOFT_PULSE_DEFAULT"); if(defname) pulse_name = defname->c_str(); } TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); mStream = plock.connectStream(pulse_name, mContext, flags, nullptr, &spec, nullptr, BackendType::Playback); pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->streamMovedCallback(stream); }, this); mFrameSize = static_cast(pa_frame_size(pa_stream_get_sample_spec(mStream))); if(pulse_name) mDeviceName.emplace(pulse_name); else mDeviceName.reset(); if(!dev_name) { auto name_callback = [](pa_context *context, const pa_sink_info *info, int eol, void *pdata) noexcept { return static_cast(pdata)->sinkNameCallback(context, info, eol); }; pa_operation *op{pa_context_get_sink_info_by_name(mContext, pa_stream_get_device_name(mStream), name_callback, this)}; plock.waitForOperation(op); } else mDevice->DeviceName = dev_name; } bool PulsePlayback::reset() { MainloopUniqueLock plock{mMainloop}; const auto deviceName = mDeviceName ? mDeviceName->c_str() : nullptr; if(mStream) { pa_stream_set_state_callback(mStream, nullptr, nullptr); pa_stream_set_moved_callback(mStream, nullptr, nullptr); pa_stream_set_write_callback(mStream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(mStream, nullptr, nullptr); pa_stream_disconnect(mStream); pa_stream_unref(mStream); mStream = nullptr; } auto info_callback = [](pa_context *context, const pa_sink_info *info, int eol, void *pdata) noexcept { return static_cast(pdata)->sinkInfoCallback(context, info, eol); }; pa_operation *op{pa_context_get_sink_info_by_name(mContext, deviceName, info_callback, this)}; plock.waitForOperation(op); pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_EARLY_REQUESTS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true)) flags |= PA_STREAM_DONT_MOVE; if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "adjust-latency", false)) { /* ADJUST_LATENCY can't be specified with EARLY_REQUESTS, for some * reason. So if the user wants to adjust the overall device latency, * we can't ask to get write signals as soon as minreq is reached. */ flags &= ~PA_STREAM_EARLY_REQUESTS; flags |= PA_STREAM_ADJUST_LATENCY; } if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "fix-rate", false) || !mDevice->Flags.test(FrequencyRequest)) flags |= PA_STREAM_FIX_RATE; pa_channel_map chanmap{}; switch(mDevice->FmtChans) { case DevFmtMono: chanmap = MonoChanMap; break; case DevFmtAmbi3D: mDevice->FmtChans = DevFmtStereo; /*fall-through*/ case DevFmtStereo: chanmap = StereoChanMap; break; case DevFmtQuad: chanmap = QuadChanMap; break; case DevFmtX51: chanmap = (mIs51Rear ? X51RearChanMap : X51ChanMap); break; case DevFmtX61: chanmap = X61ChanMap; break; case DevFmtX71: case DevFmtX3D71: chanmap = X71ChanMap; break; case DevFmtX714: chanmap = X714ChanMap; break; } setDefaultWFXChannelOrder(); switch(mDevice->FmtType) { case DevFmtByte: mDevice->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: mSpec.format = PA_SAMPLE_U8; break; case DevFmtUShort: mDevice->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtUInt: mDevice->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; } mSpec.rate = mDevice->Frequency; mSpec.channels = static_cast(mDevice->channelsFromFmt()); if(pa_sample_spec_valid(&mSpec) == 0) throw al::backend_exception{al::backend_error::DeviceError, "Invalid sample spec"}; const auto frame_size = static_cast(pa_frame_size(&mSpec)); mAttr.maxlength = ~0u; mAttr.tlength = mDevice->BufferSize * frame_size; mAttr.prebuf = 0u; mAttr.minreq = mDevice->UpdateSize * frame_size; mAttr.fragsize = ~0u; mStream = plock.connectStream(deviceName, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Playback); pa_stream_set_state_callback(mStream, [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->streamStateCallback(stream); }, this); pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->streamMovedCallback(stream); }, this); mSpec = *(pa_stream_get_sample_spec(mStream)); mFrameSize = static_cast(pa_frame_size(&mSpec)); if(mDevice->Frequency != mSpec.rate) { /* Server updated our playback rate, so modify the buffer attribs * accordingly. */ const auto scale = static_cast(mSpec.rate) / mDevice->Frequency; const auto perlen = static_cast(clampd(scale*mDevice->UpdateSize + 0.5, 64.0, 8192.0)); const auto buflen = static_cast(clampd(scale*mDevice->BufferSize + 0.5, perlen*2, std::numeric_limits::max()/mFrameSize)); mAttr.maxlength = ~0u; mAttr.tlength = buflen * mFrameSize; mAttr.prebuf = 0u; mAttr.minreq = perlen * mFrameSize; op = pa_stream_set_buffer_attr(mStream, &mAttr, &PulseMainloop::streamSuccessCallbackC, &mMainloop); plock.waitForOperation(op); mDevice->Frequency = mSpec.rate; } auto attr_callback = [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->bufferAttrCallback(stream); }; pa_stream_set_buffer_attr_callback(mStream, attr_callback, this); bufferAttrCallback(mStream); mDevice->BufferSize = mAttr.tlength / mFrameSize; mDevice->UpdateSize = mAttr.minreq / mFrameSize; return true; } void PulsePlayback::start() { MainloopUniqueLock plock{mMainloop}; /* Write some samples to fill the buffer before we start feeding it newly * mixed samples. */ if(size_t todo{pa_stream_writable_size(mStream)}) { void *buf{pa_xmalloc(todo)}; mDevice->renderSamples(buf, static_cast(todo/mFrameSize), mSpec.channels); pa_stream_write(mStream, buf, todo, pa_xfree, 0, PA_SEEK_RELATIVE); } pa_stream_set_write_callback(mStream, [](pa_stream *stream, size_t nbytes, void *pdata)noexcept { return static_cast(pdata)->streamWriteCallback(stream, nbytes); }, this); pa_operation *op{pa_stream_cork(mStream, 0, &PulseMainloop::streamSuccessCallbackC, &mMainloop)}; plock.waitForOperation(op); } void PulsePlayback::stop() { MainloopUniqueLock plock{mMainloop}; pa_operation *op{pa_stream_cork(mStream, 1, &PulseMainloop::streamSuccessCallbackC, &mMainloop)}; plock.waitForOperation(op); pa_stream_set_write_callback(mStream, nullptr, nullptr); } ClockLatency PulsePlayback::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { MainloopUniqueLock plock{mMainloop}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(err != 0) [[unlikely]] { /* If err = -PA_ERR_NODATA, it means we were called too soon after * starting the stream and no timing info has been received from the * server yet. Give a generic value since nothing better is available. */ if(err != -PA_ERR_NODATA) ERR("Failed to get stream latency: 0x%x\n", err); latency = mDevice->BufferSize - mDevice->UpdateSize; neg = 0; } else if(neg) [[unlikely]] latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } struct PulseCapture final : public BackendBase { PulseCapture(DeviceBase *device) noexcept : BackendBase{device} { } ~PulseCapture() override; void streamStateCallback(pa_stream *stream) noexcept; void sourceNameCallback(pa_context *context, const pa_source_info *info, int eol) noexcept; void streamMovedCallback(pa_stream *stream) noexcept; void open(const char *name) override; void start() override; void stop() override; void captureSamples(al::byte *buffer, uint samples) override; uint availableSamples() override; ClockLatency getClockLatency() override; PulseMainloop mMainloop; al::optional mDeviceName{al::nullopt}; al::span mCapBuffer; size_t mHoleLength{0}; size_t mPacketLength{0}; uint mLastReadable{0u}; al::byte mSilentVal{}; pa_buffer_attr mAttr{}; pa_sample_spec mSpec{}; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; DEF_NEWDEL(PulseCapture) }; PulseCapture::~PulseCapture() { if(!mContext) return; mMainloop.close(mContext, mStream); mContext = nullptr; mStream = nullptr; } void PulseCapture::streamStateCallback(pa_stream *stream) noexcept { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); mDevice->handleDisconnect("Capture stream failure"); } mMainloop.signal(); } void PulseCapture::sourceNameCallback(pa_context*, const pa_source_info *info, int eol) noexcept { if(eol) { mMainloop.signal(); return; } mDevice->DeviceName = info->description; } void PulseCapture::streamMovedCallback(pa_stream *stream) noexcept { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName->c_str()); } void PulseCapture::open(const char *name) { if(!mMainloop) { mMainloop = PulseMainloop::Create(); mMainloop.start(); } const char *pulse_name{nullptr}; if(name) { if(CaptureDevices.empty()) mMainloop.probeCaptureDevices(); auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; }); if(iter == CaptureDevices.cend()) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found", name}; pulse_name = iter->device_name.c_str(); mDevice->DeviceName = iter->name; } MainloopUniqueLock plock{mMainloop}; mContext = plock.connectContext(); pa_channel_map chanmap{}; switch(mDevice->FmtChans) { case DevFmtMono: chanmap = MonoChanMap; break; case DevFmtStereo: chanmap = StereoChanMap; break; case DevFmtQuad: chanmap = QuadChanMap; break; case DevFmtX51: chanmap = X51ChanMap; break; case DevFmtX61: chanmap = X61ChanMap; break; case DevFmtX71: chanmap = X71ChanMap; break; case DevFmtX714: chanmap = X714ChanMap; break; case DevFmtX3D71: case DevFmtAmbi3D: throw al::backend_exception{al::backend_error::DeviceError, "%s capture not supported", DevFmtChannelsString(mDevice->FmtChans)}; } setDefaultWFXChannelOrder(); switch(mDevice->FmtType) { case DevFmtUByte: mSilentVal = al::byte(0x80); mSpec.format = PA_SAMPLE_U8; break; case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: throw al::backend_exception{al::backend_error::DeviceError, "%s capture samples not supported", DevFmtTypeString(mDevice->FmtType)}; } mSpec.rate = mDevice->Frequency; mSpec.channels = static_cast(mDevice->channelsFromFmt()); if(pa_sample_spec_valid(&mSpec) == 0) throw al::backend_exception{al::backend_error::DeviceError, "Invalid sample format"}; const auto frame_size = static_cast(pa_frame_size(&mSpec)); const uint samples{maxu(mDevice->BufferSize, 100 * mDevice->Frequency / 1000)}; mAttr.minreq = ~0u; mAttr.prebuf = ~0u; mAttr.maxlength = samples * frame_size; mAttr.tlength = ~0u; mAttr.fragsize = minu(samples, 50*mDevice->Frequency/1000) * frame_size; pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true)) flags |= PA_STREAM_DONT_MOVE; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); mStream = plock.connectStream(pulse_name, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Capture); pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->streamMovedCallback(stream); }, this); pa_stream_set_state_callback(mStream, [](pa_stream *stream, void *pdata) noexcept { return static_cast(pdata)->streamStateCallback(stream); }, this); if(pulse_name) mDeviceName.emplace(pulse_name); else mDeviceName.reset(); if(mDevice->DeviceName.empty()) { auto name_callback = [](pa_context *context, const pa_source_info *info, int eol, void *pdata) noexcept { return static_cast(pdata)->sourceNameCallback(context, info, eol); }; pa_operation *op{pa_context_get_source_info_by_name(mContext, pa_stream_get_device_name(mStream), name_callback, this)}; plock.waitForOperation(op); } } void PulseCapture::start() { MainloopUniqueLock plock{mMainloop}; pa_operation *op{pa_stream_cork(mStream, 0, &PulseMainloop::streamSuccessCallbackC, &mMainloop)}; plock.waitForOperation(op); } void PulseCapture::stop() { MainloopUniqueLock plock{mMainloop}; pa_operation *op{pa_stream_cork(mStream, 1, &PulseMainloop::streamSuccessCallbackC, &mMainloop)}; plock.waitForOperation(op); } void PulseCapture::captureSamples(al::byte *buffer, uint samples) { al::span dstbuf{buffer, samples * pa_frame_size(&mSpec)}; /* Capture is done in fragment-sized chunks, so we loop until we get all * that's available. */ mLastReadable -= static_cast(dstbuf.size()); while(!dstbuf.empty()) { if(mHoleLength > 0) [[unlikely]] { const size_t rem{minz(dstbuf.size(), mHoleLength)}; std::fill_n(dstbuf.begin(), rem, mSilentVal); dstbuf = dstbuf.subspan(rem); mHoleLength -= rem; continue; } if(!mCapBuffer.empty()) { const size_t rem{minz(dstbuf.size(), mCapBuffer.size())}; std::copy_n(mCapBuffer.begin(), rem, dstbuf.begin()); dstbuf = dstbuf.subspan(rem); mCapBuffer = mCapBuffer.subspan(rem); continue; } if(!mDevice->Connected.load(std::memory_order_acquire)) [[unlikely]] break; MainloopUniqueLock plock{mMainloop}; if(mPacketLength > 0) { pa_stream_drop(mStream); mPacketLength = 0; } const pa_stream_state_t state{pa_stream_get_state(mStream)}; if(!PA_STREAM_IS_GOOD(state)) [[unlikely]] { mDevice->handleDisconnect("Bad capture state: %u", state); break; } const void *capbuf; size_t caplen; if(pa_stream_peek(mStream, &capbuf, &caplen) < 0) [[unlikely]] { mDevice->handleDisconnect("Failed retrieving capture samples: %s", pa_strerror(pa_context_errno(mContext))); break; } plock.unlock(); if(caplen == 0) break; if(!capbuf) [[unlikely]] mHoleLength = caplen; else mCapBuffer = {static_cast(capbuf), caplen}; mPacketLength = caplen; } if(!dstbuf.empty()) std::fill(dstbuf.begin(), dstbuf.end(), mSilentVal); } uint PulseCapture::availableSamples() { size_t readable{maxz(mCapBuffer.size(), mHoleLength)}; if(mDevice->Connected.load(std::memory_order_acquire)) { MainloopUniqueLock plock{mMainloop}; size_t got{pa_stream_readable_size(mStream)}; if(static_cast(got) < 0) [[unlikely]] { const char *err{pa_strerror(static_cast(got))}; ERR("pa_stream_readable_size() failed: %s\n", err); mDevice->handleDisconnect("Failed getting readable size: %s", err); } else { /* "readable" is the number of bytes from the last packet that have * not yet been read by the caller. So add the stream's readable * size excluding the last packet (the stream size includes the * last packet until it's dropped). */ if(got > mPacketLength) readable += got - mPacketLength; } } /* Avoid uint overflow, and avoid decreasing the readable count. */ readable = std::min(readable, std::numeric_limits::max()); mLastReadable = std::max(mLastReadable, static_cast(readable)); return mLastReadable / static_cast(pa_frame_size(&mSpec)); } ClockLatency PulseCapture::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { MainloopUniqueLock plock{mMainloop}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(err != 0) [[unlikely]] { ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(neg) [[unlikely]] latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } } // namespace bool PulseBackendFactory::init() { #ifdef HAVE_DYNLOAD if(!pulse_handle) { bool ret{true}; std::string missing_funcs; #ifdef _WIN32 #define PALIB "libpulse-0.dll" #elif defined(__APPLE__) && defined(__MACH__) #define PALIB "libpulse.0.dylib" #else #define PALIB "libpulse.so.0" #endif pulse_handle = LoadLib(PALIB); if(!pulse_handle) { WARN("Failed to load %s\n", PALIB); return false; } #define LOAD_FUNC(x) do { \ p##x = reinterpret_cast(GetSymbol(pulse_handle, #x)); \ if(!(p##x)) { \ ret = false; \ missing_funcs += "\n" #x; \ } \ } while(0) PULSE_FUNCS(LOAD_FUNC) #undef LOAD_FUNC if(!ret) { WARN("Missing expected functions:%s\n", missing_funcs.c_str()); CloseLib(pulse_handle); pulse_handle = nullptr; return false; } } #endif /* HAVE_DYNLOAD */ pulse_ctx_flags = PA_CONTEXT_NOFLAGS; if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", false)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; try { if(!gGlobalMainloop) { gGlobalMainloop = PulseMainloop::Create(); gGlobalMainloop.start(); } MainloopUniqueLock plock{gGlobalMainloop}; pa_context *context{plock.connectContext()}; pa_context_disconnect(context); pa_context_unref(context); return true; } catch(...) { return false; } } bool PulseBackendFactory::querySupport(BackendType type) { return type == BackendType::Playback || type == BackendType::Capture; } std::string PulseBackendFactory::probe(BackendType type) { std::string outnames; auto add_device = [&outnames](const DevMap &entry) -> void { /* +1 to also append the null char (to ensure a null-separated list and * double-null terminated list). */ outnames.append(entry.name.c_str(), entry.name.length()+1); }; switch(type) { case BackendType::Playback: gGlobalMainloop.probePlaybackDevices(); std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device); break; case BackendType::Capture: gGlobalMainloop.probeCaptureDevices(); std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device); break; } return outnames; } BackendPtr PulseBackendFactory::createBackend(DeviceBase *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new PulsePlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new PulseCapture{device}}; return nullptr; } BackendFactory &PulseBackendFactory::getFactory() { static PulseBackendFactory factory{}; return factory; }