// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2021 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- #if !defined(ASTCENC_DECOMPRESS_ONLY) /** * @brief Functions for computing color endpoints and texel weights. */ #include #include "astcenc_internal.h" #include "astcenc_vecmathlib.h" /** * @brief Compute the ideal endpoints and weights for 1 color component. * * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param pi The partition info for the current trial. * @param[out] ei The computed ideal endpoints and weights. * @param component The color component to compute. */ static void compute_ideal_colors_and_weights_1_comp( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, endpoints_and_weights& ei, unsigned int component ) { int partition_count = pi.partition_count; ei.ep.partition_count = partition_count; promise(partition_count > 0); int texel_count = bsd.texel_count; promise(texel_count > 0); float lowvalues[BLOCK_MAX_PARTITIONS] { 1e10f, 1e10f, 1e10f, 1e10f }; float highvalues[BLOCK_MAX_PARTITIONS] { -1e10f, -1e10f, -1e10f, -1e10f }; float partition_error_scale[BLOCK_MAX_PARTITIONS]; float linelengths_rcp[BLOCK_MAX_PARTITIONS]; const float *error_weights = nullptr; const float* data_vr = nullptr; assert(component < BLOCK_MAX_COMPONENTS); switch (component) { case 0: error_weights = ewb.texel_weight_r; data_vr = blk.data_r; break; case 1: error_weights = ewb.texel_weight_g; data_vr = blk.data_g; break; case 2: error_weights = ewb.texel_weight_b; data_vr = blk.data_b; break; default: error_weights = ewb.texel_weight_a; data_vr = blk.data_a; break; } for (int i = 0; i < texel_count; i++) { if (error_weights[i] > 1e-10f) { float value = data_vr[i]; int partition = pi.partition_of_texel[i]; lowvalues[partition] = astc::min(value, lowvalues[partition]); highvalues[partition] = astc::max(value, highvalues[partition]); } } vmask4 sep_mask = vint4::lane_id() == vint4(component); for (int i = 0; i < partition_count; i++) { float diff = highvalues[i] - lowvalues[i]; if (diff < 0) { lowvalues[i] = 0.0f; highvalues[i] = 0.0f; } diff = astc::max(diff, 1e-7f); partition_error_scale[i] = diff * diff; linelengths_rcp[i] = 1.0f / diff; ei.ep.endpt0[i] = select(blk.data_min, vfloat4(lowvalues[i]), sep_mask); ei.ep.endpt1[i] = select(blk.data_max, vfloat4(highvalues[i]), sep_mask); } bool is_constant_wes = true; float constant_wes = partition_error_scale[pi.partition_of_texel[0]] * error_weights[0]; for (int i = 0; i < texel_count; i++) { float value = data_vr[i]; int partition = pi.partition_of_texel[i]; value -= lowvalues[partition]; value *= linelengths_rcp[partition]; value = astc::clamp1f(value); ei.weights[i] = value; ei.weight_error_scale[i] = partition_error_scale[partition] * error_weights[i]; assert(!astc::isnan(ei.weight_error_scale[i])); is_constant_wes = is_constant_wes && ei.weight_error_scale[i] == constant_wes; } // Zero initialize any SIMD over-fetch int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); for (int i = texel_count; i < texel_count_simd; i++) { ei.weights[i] = 0.0f; ei.weight_error_scale[i] = 0.0f; } ei.is_constant_weight_error_scale = is_constant_wes; } /** * @brief Compute the ideal endpoints and weights for 2 color components. * * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param pi The partition info for the current trial. * @param[out] ei The computed ideal endpoints and weights. * @param component1 The first color component to compute. * @param component2 The second color component to compute. */ static void compute_ideal_colors_and_weights_2_comp( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, endpoints_and_weights& ei, int component1, int component2 ) { int partition_count = pi.partition_count; ei.ep.partition_count = partition_count; promise(partition_count > 0); int texel_count = bsd.texel_count; promise(texel_count > 0); partition_metrics pms[BLOCK_MAX_PARTITIONS]; const float *error_weights; const float* data_vr = nullptr; const float* data_vg = nullptr; if (component1 == 0 && component2 == 1) { error_weights = ewb.texel_weight_rg; data_vr = blk.data_r; data_vg = blk.data_g; } else if (component1 == 0 && component2 == 2) { error_weights = ewb.texel_weight_rb; data_vr = blk.data_r; data_vg = blk.data_b; } else // (component1 == 1 && component2 == 2) { error_weights = ewb.texel_weight_gb; data_vr = blk.data_g; data_vg = blk.data_b; } float lowparam[BLOCK_MAX_PARTITIONS] { 1e10f, 1e10f, 1e10f, 1e10f }; float highparam[BLOCK_MAX_PARTITIONS] { -1e10f, -1e10f, -1e10f, -1e10f }; line2 lines[BLOCK_MAX_PARTITIONS]; float scale[BLOCK_MAX_PARTITIONS]; float length_squared[BLOCK_MAX_PARTITIONS]; compute_avgs_and_dirs_2_comp(pi, blk, ewb, component1, component2, pms); for (int i = 0; i < partition_count; i++) { vfloat4 dir = pms[i].dir.swz<0, 1>(); if (hadd_s(dir) < 0.0f) { dir = vfloat4::zero() - dir; } lines[i].a = pms[i].avg.swz<0, 1>(); lines[i].b = normalize_safe(dir, unit2()); } for (int i = 0; i < texel_count; i++) { if (error_weights[i] > 1e-10f) { int partition = pi.partition_of_texel[i]; vfloat4 point = vfloat2(data_vr[i], data_vg[i]) * pms[partition].color_scale.swz<0, 1>(); line2 l = lines[partition]; float param = dot_s(point - l.a, l.b); ei.weights[i] = param; lowparam[partition] = astc::min(param, lowparam[partition]); highparam[partition] = astc::max(param, highparam[partition]); } else { ei.weights[i] = -1e38f; } } vfloat4 lowvalues[BLOCK_MAX_PARTITIONS]; vfloat4 highvalues[BLOCK_MAX_PARTITIONS]; for (int i = 0; i < partition_count; i++) { float length = highparam[i] - lowparam[i]; if (length < 0.0f) // Case for when none of the texels had any weight { lowparam[i] = 0.0f; highparam[i] = 1e-7f; } // It is possible for a uniform-color partition to produce length=0; this causes NaN issues // so set to a small value to avoid this problem. length = astc::max(length, 1e-7f); length_squared[i] = length * length; scale[i] = 1.0f / length; vfloat4 ep0 = lines[i].a + lines[i].b * lowparam[i]; vfloat4 ep1 = lines[i].a + lines[i].b * highparam[i]; ep0 = ep0.swz<0, 1>() / pms[i].color_scale; ep1 = ep1.swz<0, 1>() / pms[i].color_scale; lowvalues[i] = ep0; highvalues[i] = ep1; } vmask4 comp1_mask = vint4::lane_id() == vint4(component1); vmask4 comp2_mask = vint4::lane_id() == vint4(component2); for (int i = 0; i < partition_count; i++) { vfloat4 ep0 = select(blk.data_min, vfloat4(lowvalues[i].lane<0>()), comp1_mask); vfloat4 ep1 = select(blk.data_max, vfloat4(highvalues[i].lane<0>()), comp1_mask); ei.ep.endpt0[i] = select(ep0, vfloat4(lowvalues[i].lane<1>()), comp2_mask); ei.ep.endpt1[i] = select(ep1, vfloat4(highvalues[i].lane<1>()), comp2_mask); } bool is_constant_wes = true; float constant_wes = length_squared[pi.partition_of_texel[0]] * error_weights[0]; for (int i = 0; i < texel_count; i++) { int partition = pi.partition_of_texel[i]; float idx = (ei.weights[i] - lowparam[partition]) * scale[partition]; idx = astc::clamp1f(idx); ei.weights[i] = idx; ei.weight_error_scale[i] = length_squared[partition] * error_weights[i]; assert(!astc::isnan(ei.weight_error_scale[i])); is_constant_wes = is_constant_wes && ei.weight_error_scale[i] == constant_wes; } // Zero initialize any SIMD over-fetch int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); for (int i = texel_count; i < texel_count_simd; i++) { ei.weights[i] = 0.0f; ei.weight_error_scale[i] = 0.0f; } ei.is_constant_weight_error_scale = is_constant_wes; } /** * @brief Compute the ideal endpoints and weights for 3 color components. * * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param pi The partition info for the current trial. * @param[out] ei The computed ideal endpoints and weights. * @param omitted_component The color component excluded from the calculation. */ static void compute_ideal_colors_and_weights_3_comp( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, endpoints_and_weights& ei, unsigned int omitted_component ) { unsigned int partition_count = pi.partition_count; ei.ep.partition_count = partition_count; promise(partition_count > 0); unsigned int texel_count= bsd.texel_count; promise(texel_count > 0); partition_metrics pms[BLOCK_MAX_PARTITIONS]; const float *error_weights; const float* data_vr = nullptr; const float* data_vg = nullptr; const float* data_vb = nullptr; if (omitted_component == 0) { error_weights = ewb.texel_weight_gba; data_vr = blk.data_g; data_vg = blk.data_b; data_vb = blk.data_a; } else if (omitted_component == 1) { error_weights = ewb.texel_weight_rba; data_vr = blk.data_r; data_vg = blk.data_b; data_vb = blk.data_a; } else if (omitted_component == 2) { error_weights = ewb.texel_weight_rga; data_vr = blk.data_r; data_vg = blk.data_g; data_vb = blk.data_a; } else { error_weights = ewb.texel_weight_rgb; data_vr = blk.data_r; data_vg = blk.data_g; data_vb = blk.data_b; } float lowparam[BLOCK_MAX_PARTITIONS] { 1e10f, 1e10f, 1e10f, 1e10f }; float highparam[BLOCK_MAX_PARTITIONS] { -1e10f, -1e10f, -1e10f, -1e10f }; line3 lines[BLOCK_MAX_PARTITIONS]; float scale[BLOCK_MAX_PARTITIONS]; float length_squared[BLOCK_MAX_PARTITIONS]; compute_avgs_and_dirs_3_comp(pi, blk, ewb, omitted_component, pms); for (unsigned int i = 0; i < partition_count; i++) { vfloat4 dir = pms[i].dir; if (hadd_rgb_s(dir) < 0.0f) { dir = vfloat4::zero() - dir; } lines[i].a = pms[i].avg; lines[i].b = normalize_safe(dir, unit3()); } for (unsigned int i = 0; i < texel_count; i++) { if (error_weights[i] > 1e-10f) { int partition = pi.partition_of_texel[i]; vfloat4 point = vfloat3(data_vr[i], data_vg[i], data_vb[i]) * pms[partition].color_scale; line3 l = lines[partition]; float param = dot3_s(point - l.a, l.b); ei.weights[i] = param; lowparam[partition] = astc::min(param, lowparam[partition]); highparam[partition] = astc::max(param, highparam[partition]); } else { ei.weights[i] = -1e38f; } } for (unsigned int i = 0; i < partition_count; i++) { float length = highparam[i] - lowparam[i]; if (length < 0) // Case for when none of the texels had any weight { lowparam[i] = 0.0f; highparam[i] = 1e-7f; } // It is possible for a uniform-color partition to produce length=0; this causes NaN issues // so set to a small value to avoid this problem. length = astc::max(length, 1e-7f); length_squared[i] = length * length; scale[i] = 1.0f / length; vfloat4 ep0 = lines[i].a + lines[i].b * lowparam[i]; vfloat4 ep1 = lines[i].a + lines[i].b * highparam[i]; ep0 = ep0 / pms[i].color_scale; ep1 = ep1 / pms[i].color_scale; vfloat4 bmin = blk.data_min; vfloat4 bmax = blk.data_max; // TODO: Probably a programmatic vector permute we can do here ... assert(omitted_component < BLOCK_MAX_COMPONENTS); switch (omitted_component) { case 0: ei.ep.endpt0[i] = vfloat4(bmin.lane<0>(), ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>()); ei.ep.endpt1[i] = vfloat4(bmax.lane<0>(), ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>()); break; case 1: ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), bmin.lane<1>(), ep0.lane<1>(), ep0.lane<2>()); ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), bmax.lane<1>(), ep1.lane<1>(), ep1.lane<2>()); break; case 2: ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), bmin.lane<2>(), ep0.lane<2>()); ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), bmax.lane<2>(), ep1.lane<2>()); break; default: ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), bmin.lane<3>()); ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>(), bmax.lane<3>()); break; } } bool is_constant_wes = true; float constant_wes = length_squared[pi.partition_of_texel[0]] * error_weights[0]; for (unsigned int i = 0; i < texel_count; i++) { int partition = pi.partition_of_texel[i]; float idx = (ei.weights[i] - lowparam[partition]) * scale[partition]; idx = astc::clamp1f(idx); ei.weights[i] = idx; ei.weight_error_scale[i] = length_squared[partition] * error_weights[i]; assert(!astc::isnan(ei.weight_error_scale[i])); is_constant_wes = is_constant_wes && ei.weight_error_scale[i] == constant_wes; } // Zero initialize any SIMD over-fetch unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); for (unsigned int i = texel_count; i < texel_count_simd; i++) { ei.weights[i] = 0.0f; ei.weight_error_scale[i] = 0.0f; } ei.is_constant_weight_error_scale = is_constant_wes; } /** * @brief Compute the ideal endpoints and weights for 4 color components. * * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param pi The partition info for the current trial. * @param[out] ei The computed ideal endpoints and weights. */ static void compute_ideal_colors_and_weights_4_comp( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, endpoints_and_weights& ei ) { const float *error_weights = ewb.texel_weight; int partition_count = pi.partition_count; int texel_count= bsd.texel_count; promise(texel_count > 0); promise(partition_count > 0); float lowparam[BLOCK_MAX_PARTITIONS] { 1e10, 1e10, 1e10, 1e10 }; float highparam[BLOCK_MAX_PARTITIONS] { -1e10, -1e10, -1e10, -1e10 }; line4 lines[BLOCK_MAX_PARTITIONS]; float scale[BLOCK_MAX_PARTITIONS]; float length_squared[BLOCK_MAX_PARTITIONS]; partition_metrics pms[BLOCK_MAX_PARTITIONS]; compute_avgs_and_dirs_4_comp(pi, blk, ewb, pms); // If the direction points from light to dark then flip so ep0 is darkest for (int i = 0; i < partition_count; i++) { vfloat4 dir = pms[i].dir; if (hadd_rgb_s(dir) < 0.0f) { dir = vfloat4::zero() - dir; } lines[i].a = pms[i].avg; lines[i].b = normalize_safe(dir, unit4()); } for (int i = 0; i < texel_count; i++) { if (error_weights[i] > 1e-10f) { int partition = pi.partition_of_texel[i]; vfloat4 point = blk.texel(i) * pms[partition].color_scale; line4 l = lines[partition]; float param = dot_s(point - l.a, l.b); ei.weights[i] = param; lowparam[partition] = astc::min(param, lowparam[partition]); highparam[partition] = astc::max(param, highparam[partition]); } else { ei.weights[i] = -1e38f; } } for (int i = 0; i < partition_count; i++) { float length = highparam[i] - lowparam[i]; if (length < 0) { lowparam[i] = 0.0f; highparam[i] = 1e-7f; } // It is possible for a uniform-color partition to produce length=0; this causes NaN issues // so set to a small value to avoid this problem. length = astc::max(length, 1e-7f); length_squared[i] = length * length; scale[i] = 1.0f / length; vfloat4 ep0 = lines[i].a + lines[i].b * lowparam[i]; vfloat4 ep1 = lines[i].a + lines[i].b * highparam[i]; ei.ep.endpt0[i] = ep0 / pms[i].color_scale; ei.ep.endpt1[i] = ep1 / pms[i].color_scale; } bool is_constant_wes = true; float constant_wes = length_squared[pi.partition_of_texel[0]] * error_weights[0]; for (int i = 0; i < texel_count; i++) { int partition = pi.partition_of_texel[i]; float idx = (ei.weights[i] - lowparam[partition]) * scale[partition]; idx = astc::clamp1f(idx); ei.weights[i] = idx; ei.weight_error_scale[i] = error_weights[i] * length_squared[partition]; assert(!astc::isnan(ei.weight_error_scale[i])); is_constant_wes = is_constant_wes && ei.weight_error_scale[i] == constant_wes; } // Zero initialize any SIMD over-fetch int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); for (int i = texel_count; i < texel_count_simd; i++) { ei.weights[i] = 0.0f; ei.weight_error_scale[i] = 0.0f; } ei.is_constant_weight_error_scale = is_constant_wes; } /* See header for documentation. */ void compute_ideal_colors_and_weights_1plane( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, endpoints_and_weights& ei ) { if (blk.is_using_alpha()) { compute_ideal_colors_and_weights_4_comp(bsd, blk, ewb, pi, ei); } else { compute_ideal_colors_and_weights_3_comp(bsd,blk, ewb, pi, ei, 3); } } /* See header for documentation. */ void compute_ideal_colors_and_weights_2planes( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, const partition_info& pi, unsigned int plane2_component, endpoints_and_weights& ei1, endpoints_and_weights& ei2 ) { bool uses_alpha = blk.is_using_alpha();; assert(plane2_component < BLOCK_MAX_COMPONENTS); switch (plane2_component) { case 0: // Separate weights for red if (uses_alpha) { compute_ideal_colors_and_weights_3_comp(bsd, blk, ewb, pi, ei1, 0); } else { compute_ideal_colors_and_weights_2_comp(bsd, blk, ewb, pi, ei1, 1, 2); } compute_ideal_colors_and_weights_1_comp(bsd, blk, ewb, pi, ei2, 0); break; case 1: // Separate weights for green if (uses_alpha) { compute_ideal_colors_and_weights_3_comp(bsd,blk, ewb, pi, ei1, 1); } else { compute_ideal_colors_and_weights_2_comp(bsd, blk, ewb, pi, ei1, 0, 2); } compute_ideal_colors_and_weights_1_comp(bsd, blk, ewb, pi, ei2, 1); break; case 2: // Separate weights for blue if (uses_alpha) { compute_ideal_colors_and_weights_3_comp(bsd, blk, ewb, pi, ei1, 2); } else { compute_ideal_colors_and_weights_2_comp(bsd, blk, ewb, pi, ei1, 0, 1); } compute_ideal_colors_and_weights_1_comp(bsd, blk, ewb, pi, ei2, 2); break; default: // Separate weights for alpha assert(uses_alpha); compute_ideal_colors_and_weights_3_comp(bsd, blk, ewb, pi, ei1, 3); compute_ideal_colors_and_weights_1_comp(bsd, blk, ewb, pi, ei2, 3); break; } } /* See header for documentation. */ float compute_error_of_weight_set_1plane( const endpoints_and_weights& eai, const decimation_info& di, const float* weights ) { vfloat4 error_summav = vfloat4::zero(); float error_summa = 0.0f; unsigned int texel_count = di.texel_count; // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { // Compute the bilinear interpolation of the decimated weight grid vfloat current_values = bilinear_infill_vla(di, weights, i); // Compute the error between the computed value and the ideal weight vfloat actual_values = loada(&(eai.weights[i])); vfloat diff = current_values - actual_values; vfloat significance = loada(&(eai.weight_error_scale[i])); vfloat error = diff * diff * significance; haccumulate(error_summav, error); } // Resolve the final scalar accumulator sum haccumulate(error_summa, error_summav); return error_summa; } /* See header for documentation. */ float compute_error_of_weight_set_2planes( const endpoints_and_weights& eai1, const endpoints_and_weights& eai2, const decimation_info& di, const float* weights1, const float* weights2 ) { vfloat4 error_summav = vfloat4::zero(); float error_summa = 0.0f; unsigned int texel_count = di.texel_count; // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { // Plane 1 // Compute the bilinear interpolation of the decimated weight grid vfloat current_values1 = bilinear_infill_vla(di, weights1, i); // Compute the error between the computed value and the ideal weight vfloat actual_values1 = loada(&(eai1.weights[i])); vfloat diff = current_values1 - actual_values1; vfloat error1 = diff * diff * loada(&(eai1.weight_error_scale[i])); // Plane 2 // Compute the bilinear interpolation of the decimated weight grid vfloat current_values2 = bilinear_infill_vla(di, weights2, i); // Compute the error between the computed value and the ideal weight vfloat actual_values2 = loada(&(eai2.weights[i])); diff = current_values2 - actual_values2; vfloat error2 = diff * diff * loada(&(eai2.weight_error_scale[i])); haccumulate(error_summav, error1 + error2); } // Resolve the final scalar accumulator sum haccumulate(error_summa, error_summav); return error_summa; } /* See header for documentation. */ void compute_ideal_weights_for_decimation( const endpoints_and_weights& eai_in, endpoints_and_weights& eai_out, const decimation_info& di, float* weight_set, float* weights ) { unsigned int texel_count = di.texel_count; unsigned int weight_count = di.weight_count; promise(texel_count > 0); promise(weight_count > 0); // This function includes a copy of the epw from eai_in to eai_out. We do it here because we // want to load the data anyway, so we can avoid loading it from memory twice. eai_out.ep = eai_in.ep; eai_out.is_constant_weight_error_scale = eai_in.is_constant_weight_error_scale; // Ensure that the end of the output arrays that are used for SIMD paths later are filled so we // can safely run SIMD elsewhere without a loop tail. Note that this is always safe as weight // arrays always contain space for 64 elements unsigned int weight_count_simd = round_up_to_simd_multiple_vla(weight_count); for (unsigned int i = weight_count; i < weight_count_simd; i++) { weight_set[i] = 0.0f; } // If we have a 1:1 mapping just shortcut the computation - clone the weights into both the // weight set and the output epw copy. // Transfer enough to also copy zero initialized SIMD over-fetch region unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); if (texel_count == weight_count) { // TODO: Use SIMD copies? for (unsigned int i = 0; i < texel_count_simd; i++) { // Assert it's an identity map for valid texels, and last valid value for any overspill assert(((i < texel_count) && (i == di.weight_texel[0][i])) || ((i >= texel_count) && (texel_count - 1 == di.weight_texel[0][i]))); weight_set[i] = eai_in.weights[i]; weights[i] = eai_in.weight_error_scale[i]; eai_out.weights[i] = eai_in.weights[i]; eai_out.weight_error_scale[i] = eai_in.weight_error_scale[i]; } return; } // If we don't have a 1:1 mapping just clone the weights into the output epw copy and then do // the full algorithm to decimate weights. else { for (unsigned int i = 0; i < texel_count_simd; i++) { eai_out.weights[i] = eai_in.weights[i]; eai_out.weight_error_scale[i] = eai_in.weight_error_scale[i]; } } // Otherwise compute an estimate and perform single refinement iteration alignas(ASTCENC_VECALIGN) float infilled_weights[BLOCK_MAX_TEXELS]; // Compute an initial average for each decimated weight bool constant_wes = eai_in.is_constant_weight_error_scale; vfloat weight_error_scale(eai_in.weight_error_scale[0]); // This overshoots - this is OK as we initialize the array tails in the // decimation table structures to safe values ... for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) { // Start with a small value to avoid div-by-zero later vfloat weight_weight(1e-10f); vfloat initial_weight = vfloat::zero(); // Accumulate error weighting of all the texels using this weight vint weight_texel_count(di.weight_texel_count + i); unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); promise(max_texel_count > 0); for (unsigned int j = 0; j < max_texel_count; j++) { // Not all lanes may actually use j texels, so mask out if idle vmask active = weight_texel_count > vint(j); vint texel(di.weight_texel[j] + i); texel = select(vint::zero(), texel, active); vfloat weight = loada(di.weights_flt[j] + i); weight = select(vfloat::zero(), weight, active); if (!constant_wes) { weight_error_scale = gatherf(eai_in.weight_error_scale, texel); } vfloat contrib_weight = weight * weight_error_scale; weight_weight += contrib_weight; initial_weight += gatherf(eai_in.weights, texel) * contrib_weight; } storea(weight_weight, weights + i); storea(initial_weight / weight_weight, weight_set + i); } // Populate the interpolated weight grid based on the initital average // Process SIMD-width texel coordinates at at time while we can unsigned int is = 0; unsigned int clipped_texel_count = round_down_to_simd_multiple_vla(texel_count); for (/* */; is < clipped_texel_count; is += ASTCENC_SIMD_WIDTH) { vfloat weight = bilinear_infill_vla(di, weight_set, is); storea(weight, infilled_weights + is); } // Loop tail for (/* */; is < texel_count; is++) { infilled_weights[is] = bilinear_infill(di, weight_set, is); } // Perform a single iteration of refinement // Empirically determined step size; larger values don't help but smaller drops image quality constexpr float stepsize = 0.25f; constexpr float chd_scale = -WEIGHTS_TEXEL_SUM; for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) { vfloat weight_val = loada(weight_set + i); // Accumulate error weighting of all the texels using this weight // Start with a small value to avoid div-by-zero later vfloat error_change0(1e-10f); vfloat error_change1(0.0f); // Accumulate error weighting of all the texels using this weight vint weight_texel_count(di.weight_texel_count + i); unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); promise(max_texel_count > 0); for (unsigned int j = 0; j < max_texel_count; j++) { // Not all lanes may actually use j texels, so mask out if idle vmask active = weight_texel_count > vint(j); vint texel(di.weight_texel[j] + i); texel = select(vint::zero(), texel, active); vfloat contrib_weight = loada(di.weights_flt[j] + i); contrib_weight = select(vfloat::zero(), contrib_weight, active); if (!constant_wes) { weight_error_scale = gatherf(eai_in.weight_error_scale, texel); } vfloat scale = weight_error_scale * contrib_weight; vfloat old_weight = gatherf(infilled_weights, texel); vfloat ideal_weight = gatherf(eai_in.weights, texel); error_change0 += contrib_weight * scale; error_change1 += (old_weight - ideal_weight) * scale; } vfloat step = (error_change1 * chd_scale) / error_change0; step = clamp(-stepsize, stepsize, step); // Update the weight storea(weight_val + step, weight_set + i); } } /* See header for documentation. */ void compute_quantized_weights_for_decimation( const decimation_info& di, float low_bound, float high_bound, const float* weight_set_in, float* weight_set_out, uint8_t* quantized_weight_set, quant_method quant_level ) { int weight_count = di.weight_count; promise(weight_count > 0); const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[quant_level]); static const int quant_levels[12] { 2,3,4,5,6,8,10,12,16,20,24,32 }; float quant_level_m1 = (float)(quant_levels[quant_level] - 1); // Quantize the weight set using both the specified low/high bounds and standard 0..1 bounds assert(high_bound > low_bound); float rscale = high_bound - low_bound; float scale = 1.0f / rscale; float scaled_low_bound = low_bound * scale; rscale *= 1.0f / 64.0f; vfloat scalev(scale); vfloat scaled_low_boundv(scaled_low_bound); vfloat quant_level_m1v(quant_level_m1); vfloat rscalev(rscale); vfloat low_boundv(low_bound); // This runs to the rounded-up SIMD size, which is safe as the loop tail is filled with known // safe data in compute_ideal_weights_for_decimation and arrays are always 64 elements for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) { vfloat ix = loada(&weight_set_in[i]) * scalev - scaled_low_boundv; ix = clampzo(ix); // Look up the two closest indexes and return the one that was closest vfloat ix1 = ix * quant_level_m1v; vint weightl = float_to_int(ix1); vint weighth = weightl + vint(1); vfloat ixl = gatherf(qat->unquantized_value_unsc, weightl); vfloat ixh = gatherf(qat->unquantized_value_unsc, weighth); vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix); vint weight = select(weightl, weighth, mask); ixl = select(ixl, ixh, mask); // Invert the weight-scaling that was done initially storea(ixl * rscalev + low_boundv, &weight_set_out[i]); vint scm = gatheri(qat->scramble_map, weight); vint scn = pack_low_bytes(scm); store_nbytes(scn, &quantized_weight_set[i]); } } /** * @brief Compute the RGB + offset for a HDR endpoint mode #7. * * Since the matrix needed has a regular structure we can simplify the inverse calculation. This * gives us ~24 multiplications vs. 96 for a generic inverse. * * mat[0] = vfloat4(rgba_ws.x, 0.0f, 0.0f, wght_ws.x); * mat[1] = vfloat4( 0.0f, rgba_ws.y, 0.0f, wght_ws.y); * mat[2] = vfloat4( 0.0f, 0.0f, rgba_ws.z, wght_ws.z); * mat[3] = vfloat4(wght_ws.x, wght_ws.y, wght_ws.z, psum); * mat = invert(mat); * * @param rgba_weight_sum Sum of partition component error weights. * @param weight_weight_sum Sum of partition component error weights * texel weight. * @param rgbq_sum Sum of partition component error weights * texel weight * color data. * @param psum Sum of RGB color weights * texel weight^2. */ static inline vfloat4 compute_rgbo_vector( vfloat4 rgba_weight_sum, vfloat4 weight_weight_sum, vfloat4 rgbq_sum, float psum ) { float X = rgba_weight_sum.lane<0>(); float Y = rgba_weight_sum.lane<1>(); float Z = rgba_weight_sum.lane<2>(); float P = weight_weight_sum.lane<0>(); float Q = weight_weight_sum.lane<1>(); float R = weight_weight_sum.lane<2>(); float S = psum; float PP = P * P; float QQ = Q * Q; float RR = R * R; float SZmRR = S * Z - RR; float DT = SZmRR * Y - Z * QQ; float YP = Y * P; float QX = Q * X; float YX = Y * X; float mZYP = -Z * YP; float mZQX = -Z * QX; float mRYX = -R * YX; float ZQP = Z * Q * P; float RYP = R * YP; float RQX = R * QX; // Compute the reciprocal of matrix determinant float rdet = 1.0f / (DT * X + mZYP * P); // Actually compute the adjugate, and then apply 1/det separately vfloat4 mat0(DT, ZQP, RYP, mZYP); vfloat4 mat1(ZQP, SZmRR * X - Z * PP, RQX, mZQX); vfloat4 mat2(RYP, RQX, (S * Y - QQ) * X - Y * PP, mRYX); vfloat4 mat3(mZYP, mZQX, mRYX, Z * YX); vfloat4 vect = rgbq_sum * rdet; return vfloat4(dot_s(mat0, vect), dot_s(mat1, vect), dot_s(mat2, vect), dot_s(mat3, vect)); } /* See header for documentation. */ void recompute_ideal_colors_1plane( const image_block& blk, const error_weight_block& ewb, const partition_info& pi, const decimation_info& di, int weight_quant_mode, const uint8_t* weight_set8, endpoints& ep, vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS], vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS] ) { int weight_count = di.weight_count; int partition_count = pi.partition_count; promise(weight_count > 0); promise(partition_count > 0); const quantization_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_mode]; float weight_set[BLOCK_MAX_WEIGHTS]; for (int i = 0; i < weight_count; i++) { weight_set[i] = qat.unquantized_value[weight_set8[i]] * (1.0f / 64.0f); } for (int i = 0; i < partition_count; i++) { vfloat4 rgba_sum(1e-17f); vfloat4 rgba_weight_sum(1e-17f); int texel_count = pi.partition_texel_count[i]; const uint8_t *texel_indexes = pi.texels_of_partition[i]; promise(texel_count > 0); for (int j = 0; j < texel_count; j++) { int tix = texel_indexes[j]; vfloat4 rgba = blk.texel(tix); vfloat4 error_weight = ewb.error_weights[tix]; rgba_sum += rgba * error_weight; rgba_weight_sum += error_weight; } vfloat4 scale_direction = normalize((rgba_sum * (1.0f / rgba_weight_sum)).swz<0, 1, 2>()); float scale_max = 0.0f; float scale_min = 1e10f; float wmin1 = 1.0f; float wmax1 = 0.0f; vfloat4 left_sum = vfloat4::zero(); vfloat4 middle_sum = vfloat4::zero(); vfloat4 right_sum = vfloat4::zero(); vfloat4 lmrs_sum = vfloat4::zero(); vfloat4 color_vec_x = vfloat4::zero(); vfloat4 color_vec_y = vfloat4::zero(); vfloat4 scale_vec = vfloat4::zero(); vfloat4 weight_weight_sum = vfloat4(1e-17f); float psum = 1e-17f; // TODO: This loop has too many responsibilities, making it inefficient for (int j = 0; j < texel_count; j++) { int tix = texel_indexes[j]; vfloat4 rgba = blk.texel(tix); vfloat4 color_weight = ewb.error_weights[tix]; // TODO: Move this calculation out to the color block? float ls_weight = hadd_rgb_s(color_weight); float idx0 = bilinear_infill(di, weight_set, tix); float om_idx0 = 1.0f - idx0; wmin1 = astc::min(idx0, wmin1); wmax1 = astc::max(idx0, wmax1); float scale = dot3_s(scale_direction, rgba); scale_min = astc::min(scale, scale_min); scale_max = astc::max(scale, scale_max); vfloat4 left = color_weight * (om_idx0 * om_idx0); vfloat4 middle = color_weight * (om_idx0 * idx0); vfloat4 right = color_weight * (idx0 * idx0); vfloat4 lmrs = vfloat3(om_idx0 * om_idx0, om_idx0 * idx0, idx0 * idx0) * ls_weight; left_sum += left; middle_sum += middle; right_sum += right; lmrs_sum += lmrs; vfloat4 color_idx(idx0); vfloat4 cwprod = color_weight * rgba; vfloat4 cwiprod = cwprod * color_idx; color_vec_y += cwiprod; color_vec_x += cwprod - cwiprod; scale_vec += vfloat2(om_idx0, idx0) * (ls_weight * scale); weight_weight_sum += color_weight * color_idx; psum += dot3_s(color_weight * color_idx, color_idx); } // Calculations specific to mode #7, the HDR RGB-scale mode // TODO: Can we skip this for LDR textures? vfloat4 rgbq_sum = color_vec_x + color_vec_y; rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); vfloat4 rgbovec = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); rgbo_vectors[i] = rgbovec; // We will occasionally get a failure due to the use of a singular (non-invertible) matrix. // Record whether such a failure has taken place; if it did, compute rgbo_vectors[] with a // different method later float chkval = dot_s(rgbovec, rgbovec); int rgbo_fail = chkval != chkval; // Initialize the luminance and scale vectors with a reasonable default float scalediv = scale_min * (1.0f / astc::max(scale_max, 1e-10f)); scalediv = astc::clamp1f(scalediv); vfloat4 sds = scale_direction * scale_max; rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); if (wmin1 >= wmax1 * 0.999f) { // If all weights in the partition were equal, then just take average of all colors in // the partition and use that as both endpoint colors vfloat4 avg = (color_vec_x + color_vec_y) * (1.0f / rgba_weight_sum); vmask4 notnan_mask = avg == avg; ep.endpt0[i] = select(ep.endpt0[i], avg, notnan_mask); ep.endpt1[i] = select(ep.endpt1[i], avg, notnan_mask); rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); } else { // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given // set of texel weights and pixel colors vfloat4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum); vfloat4 color_rdet1 = 1.0f / color_det1; float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); float ls_rdet1 = 1.0f / ls_det1; vfloat4 color_mss1 = (left_sum * left_sum) + (2.0f * middle_sum * middle_sum) + (right_sum * right_sum); float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); vfloat4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1; vfloat4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1; vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); vmask4 full_mask = det_mask & notnan_mask; ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask); ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask); float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) { float scalediv2 = scale_ep0 * (1.0f / scale_ep1); vfloat4 sdsm = scale_direction * scale_ep1; rgbs_vectors[i] = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); } } // If the calculation of an RGB-offset vector failed, try to compute a value another way if (rgbo_fail) { vfloat4 v0 = ep.endpt0[i]; vfloat4 v1 = ep.endpt1[i]; float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); avgdif = astc::max(avgdif, 0.0f); vfloat4 avg = (v0 + v1) * 0.5f; vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; rgbo_vectors[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); } } } /* See header for documentation. */ void recompute_ideal_colors_2planes( const image_block& blk, const error_weight_block& ewb, const partition_info& pi, const decimation_info& di, int weight_quant_mode, const uint8_t* weight_set8_plane1, const uint8_t* weight_set8_plane2, endpoints& ep, vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS], vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS], int plane2_component ) { int weight_count = di.weight_count; int partition_count = pi.partition_count; promise(weight_count > 0); promise(partition_count > 0); const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[weight_quant_mode]); float weight_set[BLOCK_MAX_WEIGHTS]; float plane2_weight_set[BLOCK_MAX_WEIGHTS]; for (int i = 0; i < weight_count; i++) { weight_set[i] = qat->unquantized_value[weight_set8_plane1[i]] * (1.0f / 64.0f); plane2_weight_set[i] = qat->unquantized_value[weight_set8_plane2[i]] * (1.0f / 64.0f); } for (int i = 0; i < partition_count; i++) { vfloat4 rgba_sum(1e-17f); vfloat4 rgba_weight_sum(1e-17f); int texel_count = pi.partition_texel_count[i]; const uint8_t *texel_indexes = pi.texels_of_partition[i]; for (int j = 0; j < texel_count; j++) { int tix = texel_indexes[j]; vfloat4 rgba = blk.texel(tix); vfloat4 error_weight = ewb.error_weights[tix]; rgba_sum += rgba * error_weight; rgba_weight_sum += error_weight; } vfloat4 scale_direction = normalize((rgba_sum * (1.0f / rgba_weight_sum)).swz<0, 1, 2>()); float scale_max = 0.0f; float scale_min = 1e10f; float wmin1 = 1.0f; float wmax1 = 0.0f; float wmin2 = 1.0f; float wmax2 = 0.0f; vfloat4 left_sum = vfloat4::zero(); vfloat4 middle_sum = vfloat4::zero(); vfloat4 right_sum = vfloat4::zero(); vfloat4 left2_sum = vfloat4::zero(); vfloat4 middle2_sum = vfloat4::zero(); vfloat4 right2_sum = vfloat4::zero(); vfloat4 lmrs_sum = vfloat4::zero(); vfloat4 color_vec_x = vfloat4::zero(); vfloat4 color_vec_y = vfloat4::zero(); vfloat4 scale_vec = vfloat4::zero(); vfloat4 weight_weight_sum = vfloat4(1e-17f); float psum = 1e-17f; // TODO: This loop has too many responsibilities, making it inefficient for (int j = 0; j < texel_count; j++) { int tix = texel_indexes[j]; vfloat4 rgba = blk.texel(tix); vfloat4 color_weight = ewb.error_weights[tix]; // TODO: Move this calculation out to the color block? float ls_weight = hadd_rgb_s(color_weight); float idx0 = bilinear_infill(di, weight_set, tix); float om_idx0 = 1.0f - idx0; wmin1 = astc::min(idx0, wmin1); wmax1 = astc::max(idx0, wmax1); float scale = dot3_s(scale_direction, rgba); scale_min = astc::min(scale, scale_min); scale_max = astc::max(scale, scale_max); vfloat4 left = color_weight * (om_idx0 * om_idx0); vfloat4 middle = color_weight * (om_idx0 * idx0); vfloat4 right = color_weight * (idx0 * idx0); vfloat4 lmrs = vfloat3(om_idx0 * om_idx0, om_idx0 * idx0, idx0 * idx0) * ls_weight; left_sum += left; middle_sum += middle; right_sum += right; lmrs_sum += lmrs; float idx1 = 0.0f; float om_idx1 = 0.0f; idx1 = bilinear_infill(di, plane2_weight_set, tix); om_idx1 = 1.0f - idx1; wmin2 = astc::min(idx1, wmin2); wmax2 = astc::max(idx1, wmax2); vfloat4 left2 = color_weight * (om_idx1 * om_idx1); vfloat4 middle2 = color_weight * (om_idx1 * idx1); vfloat4 right2 = color_weight * (idx1 * idx1); left2_sum += left2; middle2_sum += middle2; right2_sum += right2; vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component); vfloat4 color_idx = select(vfloat4(idx0), vfloat4(idx1), p2_mask); vfloat4 cwprod = color_weight * rgba; vfloat4 cwiprod = cwprod * color_idx; color_vec_y += cwiprod; color_vec_x += cwprod - cwiprod; scale_vec += vfloat2(om_idx0, idx0) * (ls_weight * scale); weight_weight_sum += (color_weight * color_idx); psum += dot3_s(color_weight * color_idx, color_idx); } // Calculations specific to mode #7, the HDR RGB-scale mode // TODO: Can we skip this for LDR textures? vfloat4 rgbq_sum = color_vec_x + color_vec_y; rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); vfloat4 rgbovec = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); rgbo_vectors[i] = rgbovec; // We will occasionally get a failure due to the use of a singular (non-invertible) matrix. // Record whether such a failure has taken place; if it did, compute rgbo_vectors[] with a // different method later float chkval = dot_s(rgbovec, rgbovec); int rgbo_fail = chkval != chkval; // Initialize the luminance and scale vectors with a reasonable default float scalediv = scale_min * (1.0f / astc::max(scale_max, 1e-10f)); scalediv = astc::clamp1f(scalediv); vfloat4 sds = scale_direction * scale_max; rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); if (wmin1 >= wmax1 * 0.999f) { // If all weights in the partition were equal, then just take average of all colors in // the partition and use that as both endpoint colors vfloat4 avg = (color_vec_x + color_vec_y) * (1.0f / rgba_weight_sum); vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); vmask4 notnan_mask = avg == avg; vmask4 full_mask = p1_mask & notnan_mask; ep.endpt0[i] = select(ep.endpt0[i], avg, full_mask); ep.endpt1[i] = select(ep.endpt1[i], avg, full_mask); rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); } else { // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given // set of texel weights and pixel colors vfloat4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum); vfloat4 color_rdet1 = 1.0f / color_det1; float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); float ls_rdet1 = 1.0f / ls_det1; vfloat4 color_mss1 = (left_sum * left_sum) + (2.0f * middle_sum * middle_sum) + (right_sum * right_sum); float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); vfloat4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1; vfloat4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1; float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); vmask4 full_mask = p1_mask & det_mask & notnan_mask; ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask); ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask); if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) { float scalediv2 = scale_ep0 * (1.0f / scale_ep1); vfloat4 sdsm = scale_direction * scale_ep1; rgbs_vectors[i] = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); } } if (wmin2 >= wmax2 * 0.999f) { // If all weights in the partition were equal, then just take average of all colors in // the partition and use that as both endpoint colors vfloat4 avg = (color_vec_x + color_vec_y) * (1.0f / rgba_weight_sum); vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component); vmask4 notnan_mask = avg == avg; vmask4 full_mask = p2_mask & notnan_mask; ep.endpt0[i] = select(ep.endpt0[i], avg, full_mask); ep.endpt1[i] = select(ep.endpt1[i], avg, full_mask); } else { // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given // set of texel weights and pixel colors vfloat4 color_det2 = (left2_sum * right2_sum) - (middle2_sum * middle2_sum); vfloat4 color_rdet2 = 1.0f / color_det2; vfloat4 color_mss2 = (left2_sum * left2_sum) + (2.0f * middle2_sum * middle2_sum) + (right2_sum * right2_sum); vfloat4 ep0 = (right2_sum * color_vec_x - middle2_sum * color_vec_y) * color_rdet2; vfloat4 ep1 = (left2_sum * color_vec_y - middle2_sum * color_vec_x) * color_rdet2; vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component); vmask4 det_mask = abs(color_det2) > (color_mss2 * 1e-4f); vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); vmask4 full_mask = p2_mask & det_mask & notnan_mask; ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask); ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask); } // If the calculation of an RGB-offset vector failed, try to compute a value another way if (rgbo_fail) { vfloat4 v0 = ep.endpt0[i]; vfloat4 v1 = ep.endpt1[i]; float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); avgdif = astc::max(avgdif, 0.0f); vfloat4 avg = (v0 + v1) * 0.5f; vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; rgbo_vectors[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); } } } #endif