// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2019-2022 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief 8x32-bit vectors, implemented using AVX2. * * This module implements 8-wide 32-bit float, int, and mask vectors for x86 * AVX2. * * There is a baseline level of functionality provided by all vector widths and * implementations. This is implemented using identical function signatures, * modulo data type, so we can use them as substitutable implementations in VLA * code. */ #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED #define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED #ifndef ASTCENC_SIMD_INLINE #error "Include astcenc_vecmathlib.h, do not include directly" #endif #include // Define convenience intrinsics that are missing on older compilers #define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1) // ============================================================================ // vfloat8 data type // ============================================================================ /** * @brief Data type for 8-wide floats. */ struct vfloat8 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vfloat8() = default; /** * @brief Construct from 4 values loaded from an unaligned address. * * Consider using loada() which is better with vectors if data is aligned * to vector length. */ ASTCENC_SIMD_INLINE explicit vfloat8(const float *p) { m = _mm256_loadu_ps(p); } /** * @brief Construct from 1 scalar value replicated across all lanes. * * Consider using zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vfloat8(float a) { m = _mm256_set1_ps(a); } /** * @brief Construct from 8 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vfloat8( float a, float b, float c, float d, float e, float f, float g, float h) { m = _mm256_set_ps(h, g, f, e, d, c, b, a); } /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a) { m = a; } /** * @brief Get the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE float lane() const { #if !defined(__clang__) && defined(_MSC_VER) return m.m256_f32[l]; #else union { __m256 m; float f[8]; } cvt; cvt.m = m; return cvt.f[l]; #endif } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vfloat8 zero() { return vfloat8(_mm256_setzero_ps()); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p) { return vfloat8(_mm256_broadcast_ss(p)); } /** * @brief Factory that returns a vector loaded from 32B aligned memory. */ static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p) { return vfloat8(_mm256_load_ps(p)); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vfloat8 lane_id() { return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0)); } /** * @brief The vector ... */ __m256 m; }; // ============================================================================ // vint8 data type // ============================================================================ /** * @brief Data type for 8-wide ints. */ struct vint8 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vint8() = default; /** * @brief Construct from 8 values loaded from an unaligned address. * * Consider using loada() which is better with vectors if data is aligned * to vector length. */ ASTCENC_SIMD_INLINE explicit vint8(const int *p) { m = _mm256_loadu_si256(reinterpret_cast(p)); } /** * @brief Construct from 8 uint8_t loaded from an unaligned address. */ ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p) { // _mm_loadu_si64 would be nicer syntax, but missing on older GCC m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast(p))); } /** * @brief Construct from 1 scalar value replicated across all lanes. * * Consider using vfloat4::zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vint8(int a) { m = _mm256_set1_epi32(a); } /** * @brief Construct from 8 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vint8( int a, int b, int c, int d, int e, int f, int g, int h) { m = _mm256_set_epi32(h, g, f, e, d, c, b, a); } /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vint8(__m256i a) { m = a; } /** * @brief Get the scalar from a single lane. */ template ASTCENC_SIMD_INLINE int lane() const { #if !defined(__clang__) && defined(_MSC_VER) return m.m256i_i32[l]; #else union { __m256i m; int f[8]; } cvt; cvt.m = m; return cvt.f[l]; #endif } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vint8 zero() { return vint8(_mm256_setzero_si256()); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vint8 load1(const int* p) { __m128i a = _mm_set1_epi32(*p); return vint8(_mm256_broadcastd_epi32(a)); } /** * @brief Factory that returns a vector loaded from 32B aligned memory. */ static ASTCENC_SIMD_INLINE vint8 loada(const int* p) { return vint8(_mm256_load_si256(reinterpret_cast(p))); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vint8 lane_id() { return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0)); } /** * @brief The vector ... */ __m256i m; }; // ============================================================================ // vmask8 data type // ============================================================================ /** * @brief Data type for 8-wide control plane masks. */ struct vmask8 { /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask8(__m256 a) { m = a; } /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask8(__m256i a) { m = _mm256_castsi256_ps(a); } /** * @brief Construct from 1 scalar value. */ ASTCENC_SIMD_INLINE explicit vmask8(bool a) { vint8 mask(a == false ? 0 : -1); m = _mm256_castsi256_ps(mask.m); } /** * @brief The vector ... */ __m256 m; }; // ============================================================================ // vmask8 operators and functions // ============================================================================ /** * @brief Overload: mask union (or). */ ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b) { return vmask8(_mm256_or_ps(a.m, b.m)); } /** * @brief Overload: mask intersect (and). */ ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b) { return vmask8(_mm256_and_ps(a.m, b.m)); } /** * @brief Overload: mask difference (xor). */ ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b) { return vmask8(_mm256_xor_ps(a.m, b.m)); } /** * @brief Overload: mask invert (not). */ ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a) { return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1))); } /** * @brief Return a 8-bit mask code indicating mask status. * * bit0 = lane 0 */ ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a) { return static_cast(_mm256_movemask_ps(a.m)); } /** * @brief True if any lanes are enabled, false otherwise. */ ASTCENC_SIMD_INLINE bool any(vmask8 a) { return mask(a) != 0; } /** * @brief True if all lanes are enabled, false otherwise. */ ASTCENC_SIMD_INLINE bool all(vmask8 a) { return mask(a) == 0xFF; } // ============================================================================ // vint8 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b) { return vint8(_mm256_add_epi32(a.m, b.m)); } /** * @brief Overload: vector by vector incremental addition. */ ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b) { a = a + b; return a; } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b) { return vint8(_mm256_sub_epi32(a.m, b.m)); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b) { return vint8(_mm256_mullo_epi32(a.m, b.m)); } /** * @brief Overload: vector bit invert. */ ASTCENC_SIMD_INLINE vint8 operator~(vint8 a) { return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1))); } /** * @brief Overload: vector by vector bitwise or. */ ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b) { return vint8(_mm256_or_si256(a.m, b.m)); } /** * @brief Overload: vector by vector bitwise and. */ ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b) { return vint8(_mm256_and_si256(a.m, b.m)); } /** * @brief Overload: vector by vector bitwise xor. */ ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b) { return vint8(_mm256_xor_si256(a.m, b.m)); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b) { return vmask8(_mm256_cmpeq_epi32(a.m, b.m)); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b) { return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m)); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b) { return vmask8(_mm256_cmpgt_epi32(b.m, a.m)); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b) { return vmask8(_mm256_cmpgt_epi32(a.m, b.m)); } /** * @brief Logical shift left. */ template ASTCENC_SIMD_INLINE vint8 lsl(vint8 a) { return vint8(_mm256_slli_epi32(a.m, s)); } /** * @brief Arithmetic shift right. */ template ASTCENC_SIMD_INLINE vint8 asr(vint8 a) { return vint8(_mm256_srai_epi32(a.m, s)); } /** * @brief Logical shift right. */ template ASTCENC_SIMD_INLINE vint8 lsr(vint8 a) { return vint8(_mm256_srli_epi32(a.m, s)); } /** * @brief Return the min vector of two vectors. */ ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b) { return vint8(_mm256_min_epi32(a.m, b.m)); } /** * @brief Return the max vector of two vectors. */ ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b) { return vint8(_mm256_max_epi32(a.m, b.m)); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE vint8 hmin(vint8 a) { __m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); __m256i r = astcenc_mm256_set_m128i(m, m); vint8 vmin(r); return vmin; } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE vint8 hmax(vint8 a) { __m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); __m256i r = astcenc_mm256_set_m128i(m, m); vint8 vmax(r); return vmax; } /** * @brief Store a vector to a 16B aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vint8 a, int* p) { _mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vint8 a, int* p) { _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m); } /** * @brief Store lowest N (vector width) bytes into an unaligned address. */ ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p) { // This is the most logical implementation, but the convenience intrinsic // is missing on older compilers (supported in g++ 9 and clang++ 9). // _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0)) _mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0)); } /** * @brief Gather N (vector width) indices from the array. */ ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices) { return vint8(_mm256_i32gather_epi32(base, indices.m, 4)); } /** * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. */ ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v) { __m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 24, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 8, 4, 0); __m256i a = _mm256_shuffle_epi8(v.m, shuf); __m128i a0 = _mm256_extracti128_si256(a, 0); __m128i a1 = _mm256_extracti128_si256(a, 1); __m128i b = _mm_unpacklo_epi32(a0, a1); __m256i r = astcenc_mm256_set_m128i(b, b); return vint8(r); } /** * @brief Return lanes from @c b if @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond) { __m256i condi = _mm256_castps_si256(cond.m); return vint8(_mm256_blendv_epi8(a.m, b.m, condi)); } // ============================================================================ // vfloat4 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_add_ps(a.m, b.m)); } /** * @brief Overload: vector by vector incremental addition. */ ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b) { a = a + b; return a; } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_sub_ps(a.m, b.m)); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_mul_ps(a.m, b.m)); } /** * @brief Overload: vector by scalar multiplication. */ ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b) { return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b))); } /** * @brief Overload: scalar by vector multiplication. */ ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b) { return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m)); } /** * @brief Overload: vector by vector division. */ ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_div_ps(a.m, b.m)); } /** * @brief Overload: vector by scalar division. */ ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b) { return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b))); } /** * @brief Overload: scalar by vector division. */ ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b) { return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m)); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ)); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ)); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ)); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ)); } /** * @brief Overload: vector by vector less than or equal. */ ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ)); } /** * @brief Overload: vector by vector greater than or equal. */ ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b) { return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ)); } /** * @brief Return the min vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_min_ps(a.m, b.m)); } /** * @brief Return the min vector of a vector and a scalar. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b) { return min(a, vfloat8(b)); } /** * @brief Return the max vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b) { return vfloat8(_mm256_max_ps(a.m, b.m)); } /** * @brief Return the max vector of a vector and a scalar. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b) { return max(a, vfloat8(b)); } /** * @brief Return the clamped value between min and max. * * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN * then @c min will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a) { // Do not reorder - second operand will return if either is NaN a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min)); a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); return a; } /** * @brief Return a clamped value between 0.0f and max. * * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will * be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a) { a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); return a; } /** * @brief Return a clamped value between 0.0f and 1.0f. * * If @c a is NaN then zero will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a) { a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f)); return a; } /** * @brief Return the absolute value of the float vector. */ ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a) { __m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff)); return vfloat8(_mm256_and_ps(a.m, msk)); } /** * @brief Return a float rounded to the nearest integer value. */ ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a) { constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; return vfloat8(_mm256_round_ps(a.m, flags)); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a) { __m128 vlow = _mm256_castps256_ps128(a.m); __m128 vhigh = _mm256_extractf128_ps(a.m, 1); vlow = _mm_min_ps(vlow, vhigh); // First do an horizontal reduction. __m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1)); __m128 mins = _mm_min_ps(vlow, shuf); shuf = _mm_movehl_ps(shuf, mins); mins = _mm_min_ss(mins, shuf); // This is the most logical implementation, but the convenience intrinsic // is missing on older compilers (supported in g++ 9 and clang++ 9). //__m256i r = _mm256_set_m128(m, m) __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1); return vfloat8(_mm256_permute_ps(r, 0)); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a) { return hmin(a).lane<0>(); } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a) { __m128 vlow = _mm256_castps256_ps128(a.m); __m128 vhigh = _mm256_extractf128_ps(a.m, 1); vhigh = _mm_max_ps(vlow, vhigh); // First do an horizontal reduction. __m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1)); __m128 maxs = _mm_max_ps(vhigh, shuf); shuf = _mm_movehl_ps(shuf,maxs); maxs = _mm_max_ss(maxs, shuf); // This is the most logical implementation, but the convenience intrinsic // is missing on older compilers (supported in g++ 9 and clang++ 9). //__m256i r = _mm256_set_m128(m, m) __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1); return vfloat8(_mm256_permute_ps(r, 0)); } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a) { return hmax(a).lane<0>(); } /** * @brief Return the horizontal sum of a vector. */ ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a) { // Two sequential 4-wide adds gives invariance with 4-wide code vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); return hadd_s(lo) + hadd_s(hi); } /** * @brief Return lanes from @c b if @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond) { return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); } /** * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond) { return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); } /** * @brief Accumulate lane-wise sums for a vector, folded 4-wide. * * This is invariant with 4-wide implementations. */ ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a) { vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); haccumulate(accum, lo); vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); haccumulate(accum, hi); } /** * @brief Accumulate lane-wise sums for a vector. * * This is NOT invariant with 4-wide implementations. */ ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a) { accum += a; } /** * @brief Accumulate masked lane-wise sums for a vector, folded 4-wide. * * This is invariant with 4-wide implementations. */ ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m) { a = select(vfloat8::zero(), a, m); haccumulate(accum, a); } /** * @brief Accumulate masked lane-wise sums for a vector. * * This is NOT invariant with 4-wide implementations. */ ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m) { a = select(vfloat8::zero(), a, m); haccumulate(accum, a); } /** * @brief Return the sqrt of the lanes in the vector. */ ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a) { return vfloat8(_mm256_sqrt_ps(a.m)); } /** * @brief Load a vector of gathered results from an array; */ ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices) { return vfloat8(_mm256_i32gather_ps(base, indices.m, 4)); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p) { _mm256_storeu_ps(p, a.m); } /** * @brief Store a vector to a 32B aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p) { _mm256_store_ps(p, a.m); } /** * @brief Return a integer value for a float vector, using truncation. */ ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a) { return vint8(_mm256_cvttps_epi32(a.m)); } /** * @brief Return a integer value for a float vector, using round-to-nearest. */ ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a) { a = a + vfloat8(0.5f); return vint8(_mm256_cvttps_epi32(a.m)); } /** * @brief Return a float value for an integer vector. */ ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a) { return vfloat8(_mm256_cvtepi32_ps(a.m)); } /** * @brief Return a float value as an integer bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the first half of that flip. */ ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a) { return vint8(_mm256_castps_si256(a.m)); } /** * @brief Return a integer value as a float bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the second half of that flip. */ ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a) { return vfloat8(_mm256_castsi256_ps(a.m)); } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p) { // AVX2 duplicates the table within each 128-bit lane __m128i t0n = t0.m; t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p) { // AVX2 duplicates the table within each 128-bit lane __m128i t0n = t0.m; t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); __m128i t1n = _mm_xor_si128(t0.m, t1.m); t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare( vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p) { // AVX2 duplicates the table within each 128-bit lane __m128i t0n = t0.m; t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); __m128i t1n = _mm_xor_si128(t0.m, t1.m); t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); __m128i t2n = _mm_xor_si128(t1.m, t2.m); t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n)); __m128i t3n = _mm_xor_si128(t2.m, t3.m); t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n)); } /** * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx) { // Set index byte MSB to 1 for unused bytes so shuffle returns zero __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast(0xFFFFFF00))); __m256i result = _mm256_shuffle_epi8(t0.m, idxx); return vint8(result); } /** * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx) { // Set index byte MSB to 1 for unused bytes so shuffle returns zero __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast(0xFFFFFF00))); __m256i result = _mm256_shuffle_epi8(t0.m, idxx); idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); result = _mm256_xor_si256(result, result2); return vint8(result); } /** * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx) { // Set index byte MSB to 1 for unused bytes so shuffle returns zero __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast(0xFFFFFF00))); __m256i result = _mm256_shuffle_epi8(t0.m, idxx); idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); result = _mm256_xor_si256(result, result2); idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); result2 = _mm256_shuffle_epi8(t2.m, idxx); result = _mm256_xor_si256(result, result2); idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); result2 = _mm256_shuffle_epi8(t3.m, idxx); result = _mm256_xor_si256(result, result2); return vint8(result); } /** * @brief Return a vector of interleaved RGBA data. * * Input vectors have the value stored in the bottom 8 bits of each lane, * with high bits set to zero. * * Output vector stores a single RGBA texel packed in each lane. */ ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a) { return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); } /** * @brief Store a vector, skipping masked lanes. * * All masked lanes must be at the end of vector, after all non-masked lanes. */ ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint8 data, vmask8 mask) { _mm256_maskstore_epi32(base, _mm256_castps_si256(mask.m), data.m); } /** * @brief Debug function to print a vector of ints. */ ASTCENC_SIMD_INLINE void print(vint8 a) { alignas(ASTCENC_VECALIGN) int v[8]; storea(a, v); printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); } /** * @brief Debug function to print a vector of ints. */ ASTCENC_SIMD_INLINE void printx(vint8 a) { alignas(ASTCENC_VECALIGN) int v[8]; storea(a, v); printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); } /** * @brief Debug function to print a vector of floats. */ ASTCENC_SIMD_INLINE void print(vfloat8 a) { alignas(ASTCENC_VECALIGN) float v[8]; storea(a, v); printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n", static_cast(v[0]), static_cast(v[1]), static_cast(v[2]), static_cast(v[3]), static_cast(v[4]), static_cast(v[5]), static_cast(v[6]), static_cast(v[7])); } /** * @brief Debug function to print a vector of masks. */ ASTCENC_SIMD_INLINE void print(vmask8 a) { print(select(vint8(0), vint8(1), a)); } #endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED