/* * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // 1-D constrained system // m (v2 - v1) = lambda // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. // x2 = x1 + h * v2 // 1-D mass-damper-spring system // m (v2 - v1) + h * d * v2 + h * k * // C = norm(p2 - p1) - L // u = (p2 - p1) / norm(p2 - p1) // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) // J = [-u -cross(r1, u) u cross(r2, u)] // K = J * invM * JT // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor1, const b2Vec2& anchor2) { bodyA = b1; bodyB = b2; localAnchorA = bodyA->GetLocalPoint(anchor1); localAnchorB = bodyB->GetLocalPoint(anchor2); b2Vec2 d = anchor2 - anchor1; length = d.Length(); } b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) : b2Joint(def) { m_localAnchor1 = def->localAnchorA; m_localAnchor2 = def->localAnchorB; m_length = def->length; m_frequencyHz = def->frequencyHz; m_dampingRatio = def->dampingRatio; m_impulse = 0.0f; m_gamma = 0.0f; m_bias = 0.0f; } void b2DistanceJoint::InitVelocityConstraints(const b2TimeStep& step) { b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; // Compute the effective mass matrix. b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); m_u = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; // Handle singularity. float32 length = m_u.Length(); if (length > b2_linearSlop) { m_u *= 1.0f / length; } else { m_u.Set(0.0f, 0.0f); } float32 cr1u = b2Cross(r1, m_u); float32 cr2u = b2Cross(r2, m_u); float32 invMass = b1->m_invMass + b1->m_invI * cr1u * cr1u + b2->m_invMass + b2->m_invI * cr2u * cr2u; m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; if (m_frequencyHz > 0.0f) { float32 C = length - m_length; // Frequency float32 omega = 2.0f * b2_pi * m_frequencyHz; // Damping coefficient float32 d = 2.0f * m_mass * m_dampingRatio * omega; // Spring stiffness float32 k = m_mass * omega * omega; // magic formulas m_gamma = step.dt * (d + step.dt * k); m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; m_bias = C * step.dt * k * m_gamma; m_mass = invMass + m_gamma; m_mass = m_mass != 0.0f ? 1.0f / m_mass : 0.0f; } if (step.warmStarting) { // Scale the impulse to support a variable time step. m_impulse *= step.dtRatio; b2Vec2 P = m_impulse * m_u; b1->m_linearVelocity -= b1->m_invMass * P; b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P); b2->m_linearVelocity += b2->m_invMass * P; b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P); } else { m_impulse = 0.0f; } } void b2DistanceJoint::SolveVelocityConstraints(const b2TimeStep& step) { B2_NOT_USED(step); b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); // Cdot = dot(u, v + cross(w, r)) b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1); b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2); float32 Cdot = b2Dot(m_u, v2 - v1); float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); m_impulse += impulse; b2Vec2 P = impulse * m_u; b1->m_linearVelocity -= b1->m_invMass * P; b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P); b2->m_linearVelocity += b2->m_invMass * P; b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P); } bool b2DistanceJoint::SolvePositionConstraints(float32 baumgarte) { B2_NOT_USED(baumgarte); if (m_frequencyHz > 0.0f) { // There is no position correction for soft distance constraints. return true; } b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; float32 length = d.Normalize(); float32 C = length - m_length; C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); float32 impulse = -m_mass * C; m_u = d; b2Vec2 P = impulse * m_u; b1->m_sweep.c -= b1->m_invMass * P; b1->m_sweep.a -= b1->m_invI * b2Cross(r1, P); b2->m_sweep.c += b2->m_invMass * P; b2->m_sweep.a += b2->m_invI * b2Cross(r2, P); b1->SynchronizeTransform(); b2->SynchronizeTransform(); return b2Abs(C) < b2_linearSlop; } b2Vec2 b2DistanceJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchor1); } b2Vec2 b2DistanceJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchor2); } b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 F = (inv_dt * m_impulse) * m_u; return F; } float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const { B2_NOT_USED(inv_dt); return 0.0f; }