/* * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // p = attached point, m = mouse point // C = p - m // Cdot = v // = v + cross(w, r) // J = [I r_skew] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def) : b2Joint(def) { b2Assert(def->target.IsValid()); b2Assert(b2IsValid(def->maxForce) && def->maxForce >= 0.0f); b2Assert(b2IsValid(def->frequencyHz) && def->frequencyHz >= 0.0f); b2Assert(b2IsValid(def->dampingRatio) && def->dampingRatio >= 0.0f); m_target = def->target; m_localAnchor = b2MulT(m_bodyB->GetTransform(), m_target); m_maxForce = def->maxForce; m_impulse.SetZero(); m_frequencyHz = def->frequencyHz; m_dampingRatio = def->dampingRatio; m_beta = 0.0f; m_gamma = 0.0f; } void b2MouseJoint::SetTarget(const b2Vec2& target) { if (m_bodyB->IsAwake() == false) { m_bodyB->SetAwake(true); } m_target = target; } const b2Vec2& b2MouseJoint::GetTarget() const { return m_target; } void b2MouseJoint::SetMaxForce(float32 force) { m_maxForce = force; } float32 b2MouseJoint::GetMaxForce() const { return m_maxForce; } void b2MouseJoint::SetFrequency(float32 hz) { m_frequencyHz = hz; } float32 b2MouseJoint::GetFrequency() const { return m_frequencyHz; } void b2MouseJoint::SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; } float32 b2MouseJoint::GetDampingRatio() const { return m_dampingRatio; } void b2MouseJoint::InitVelocityConstraints(const b2TimeStep& step) { b2Body* b = m_bodyB; float32 mass = b->GetMass(); // Frequency float32 omega = 2.0f * b2_pi * m_frequencyHz; // Damping coefficient float32 d = 2.0f * mass * m_dampingRatio * omega; // Spring stiffness float32 k = mass * (omega * omega); // magic formulas // gamma has units of inverse mass. // beta has units of inverse time. b2Assert(d + step.dt * k > b2_epsilon); m_gamma = step.dt * (d + step.dt * k); if (m_gamma != 0.0f) { m_gamma = 1.0f / m_gamma; } m_beta = step.dt * k * m_gamma; // Compute the effective mass matrix. b2Vec2 r = b2Mul(b->GetTransform().R, m_localAnchor - b->GetLocalCenter()); // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y] // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x] float32 invMass = b->m_invMass; float32 invI = b->m_invI; b2Mat22 K1; K1.col1.x = invMass; K1.col2.x = 0.0f; K1.col1.y = 0.0f; K1.col2.y = invMass; b2Mat22 K2; K2.col1.x = invI * r.y * r.y; K2.col2.x = -invI * r.x * r.y; K2.col1.y = -invI * r.x * r.y; K2.col2.y = invI * r.x * r.x; b2Mat22 K = K1 + K2; K.col1.x += m_gamma; K.col2.y += m_gamma; m_mass = K.GetInverse(); m_C = b->m_sweep.c + r - m_target; // Cheat with some damping b->m_angularVelocity *= 0.98f; // Warm starting. m_impulse *= step.dtRatio; b->m_linearVelocity += invMass * m_impulse; b->m_angularVelocity += invI * b2Cross(r, m_impulse); } void b2MouseJoint::SolveVelocityConstraints(const b2TimeStep& step) { b2Body* b = m_bodyB; b2Vec2 r = b2Mul(b->GetTransform().R, m_localAnchor - b->GetLocalCenter()); // Cdot = v + cross(w, r) b2Vec2 Cdot = b->m_linearVelocity + b2Cross(b->m_angularVelocity, r); b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_beta * m_C + m_gamma * m_impulse)); b2Vec2 oldImpulse = m_impulse; m_impulse += impulse; float32 maxImpulse = step.dt * m_maxForce; if (m_impulse.LengthSquared() > maxImpulse * maxImpulse) { m_impulse *= maxImpulse / m_impulse.Length(); } impulse = m_impulse - oldImpulse; b->m_linearVelocity += b->m_invMass * impulse; b->m_angularVelocity += b->m_invI * b2Cross(r, impulse); } b2Vec2 b2MouseJoint::GetAnchorA() const { return m_target; } b2Vec2 b2MouseJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchor); } b2Vec2 b2MouseJoint::GetReactionForce(float32 inv_dt) const { return inv_dt * m_impulse; } float32 b2MouseJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * 0.0f; }