// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2021 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- #if !defined(ASTCENC_DECOMPRESS_ONLY) /** * @brief Functions to compress a symbolic block. */ #include "astcenc_internal.h" #include "astcenc_diagnostic_trace.h" #include /** * @brief Merge two planes of endpoints into a single vector. * * @param ep_plane1 The endpoints for plane 1. * @param ep_plane2 The endpoints for plane 2. * @param component_plane2 The color component for plane 2. * @param[out] result The merged output. */ static void merge_endpoints( const endpoints& ep_plane1, const endpoints& ep_plane2, unsigned int component_plane2, endpoints& result ) { unsigned int partition_count = ep_plane1.partition_count; vmask4 sep_mask = vint4::lane_id() == vint4(component_plane2); result.partition_count = partition_count; promise(partition_count > 0); for (unsigned int i = 0; i < partition_count; i++) { result.endpt0[i] = select(ep_plane1.endpt0[i], ep_plane2.endpt0[i], sep_mask); result.endpt1[i] = select(ep_plane1.endpt1[i], ep_plane2.endpt1[i], sep_mask); } } /** * @brief Attempt to improve weights given a chosen configuration. * * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per * partition and per plane) and attempt to improve image quality by moving each weight up by one or * down by one quantization step. * * @param decode_mode The decode mode (LDR, HDR). * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param[out] scb The symbolic compressed block output. * @param[out] dec_weights_quant_pvalue_plane1 The weights for plane 1. * @param[out] dec_weights_quant_pvalue_plane2 The weights for plane 2, or @c nullptr if 1 plane. */ static bool realign_weights( astcenc_profile decode_mode, const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, symbolic_compressed_block& scb, uint8_t* dec_weights_quant_pvalue_plane1, uint8_t* dec_weights_quant_pvalue_plane2 ) { // Get the partition descriptor unsigned int partition_count = scb.partition_count; const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); // Get the quantization table const block_mode& bm = bsd.get_block_mode(scb.block_mode); unsigned int weight_quant_level = bm.quant_mode; const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[weight_quant_level]); // Get the decimation table const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); unsigned int weight_count = di.weight_count; unsigned int max_plane = bm.is_dual_plane; int plane2_component = bm.is_dual_plane ? scb.plane2_component : -1; vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); // Decode the color endpoints bool rgb_hdr; bool alpha_hdr; vint4 endpnt0[BLOCK_MAX_PARTITIONS]; vint4 endpnt1[BLOCK_MAX_PARTITIONS]; vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; vfloat4 offset[BLOCK_MAX_PARTITIONS]; promise(partition_count > 0); promise(weight_count > 0); for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) { unpack_color_endpoints(decode_mode, scb.color_formats[pa_idx], scb.get_color_quant_mode(), scb.color_values[pa_idx], rgb_hdr, alpha_hdr, endpnt0[pa_idx], endpnt1[pa_idx]); } uint8_t uq_pl_weights[BLOCK_MAX_WEIGHTS]; uint8_t* dec_weights_quant_pvalue = dec_weights_quant_pvalue_plane1; bool adjustments = false; // For each plane and partition ... for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) { for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) { // Compute the endpoint delta for all components in current plane vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; epd = select(epd, vint4::zero(), plane_mask); endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); } // Create an unquantized weight grid for this decimation level for (unsigned int we_idx = 0; we_idx < weight_count; we_idx++) { uq_pl_weights[we_idx] = qat->unquantized_value[dec_weights_quant_pvalue[we_idx]]; } // For each weight compute previous, current, and next errors for (unsigned int we_idx = 0; we_idx < weight_count; we_idx++) { unsigned int uqw = uq_pl_weights[we_idx]; uint32_t prev_and_next = qat->prev_next_values[uqw]; unsigned int prev_wt_uq = prev_and_next & 0xFF; unsigned int next_wt_uq = (prev_and_next >> 8) & 0xFF; int uqw_next_dif = next_wt_uq - uqw; int uqw_prev_dif = prev_wt_uq - uqw; float current_error = 0.0f; float up_error = 0.0f; float down_error = 0.0f; // Interpolate the colors to create the diffs unsigned int texels_to_evaluate = di.weight_texel_count[we_idx]; promise(texels_to_evaluate > 0); for (unsigned int te_idx = 0; te_idx < texels_to_evaluate; te_idx++) { unsigned int texel = di.weight_texel[te_idx][we_idx]; const uint8_t *texel_weights = di.texel_weights_texel[we_idx][te_idx]; const float *texel_weights_float = di.texel_weights_float_texel[we_idx][te_idx]; float twf0 = texel_weights_float[0]; float weight_base = static_cast(uqw) * twf0; // Don't interpolate filtered weights for a 1:1 weight grid if (weight_count != bsd.texel_count) { weight_base = (( weight_base + static_cast(uq_pl_weights[texel_weights[1]]) * texel_weights_float[1]) + (static_cast(uq_pl_weights[texel_weights[2]]) * texel_weights_float[2] + static_cast(uq_pl_weights[texel_weights[3]]) * texel_weights_float[3])); } unsigned int partition = pi.partition_of_texel[texel]; weight_base = weight_base + 0.5f; float plane_weight = astc::flt_rd(weight_base); float plane_up_weight = astc::flt_rd(weight_base + static_cast(uqw_next_dif) * twf0) - plane_weight; float plane_down_weight = astc::flt_rd(weight_base + static_cast(uqw_prev_dif) * twf0) - plane_weight; vfloat4 color_offset = offset[partition]; vfloat4 color_base = endpnt0f[partition]; vfloat4 color = color_base + color_offset * plane_weight; vfloat4 origcolor = blk.texel(texel); vfloat4 error_weight = ewb.error_weights[texel]; vfloat4 colordiff = color - origcolor; vfloat4 color_up_diff = colordiff + color_offset * plane_up_weight; vfloat4 color_down_diff = colordiff + color_offset * plane_down_weight; current_error += dot_s(colordiff * colordiff, error_weight); up_error += dot_s(color_up_diff * color_up_diff, error_weight); down_error += dot_s(color_down_diff * color_down_diff, error_weight); } // Check if the prev or next error is better, and if so use it if ((up_error < current_error) && (up_error < down_error)) { uq_pl_weights[we_idx] = static_cast(next_wt_uq); dec_weights_quant_pvalue[we_idx] = (uint8_t)((prev_and_next >> 24) & 0xFF); adjustments = true; } else if (down_error < current_error) { uq_pl_weights[we_idx] = static_cast(prev_wt_uq); dec_weights_quant_pvalue[we_idx] = (uint8_t)((prev_and_next >> 16) & 0xFF); adjustments = true; } } // Prepare iteration for plane 2 dec_weights_quant_pvalue = dec_weights_quant_pvalue_plane2; plane_mask = ~plane_mask; } return adjustments; } /** * @brief Compress a block using a chosen partitioning and 1 plane of weights. * * @param config The compressor configuration. * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param only_always True if we only use "always" percentile block modes. * @param tune_errorval_threshold The error value threshold. * @param partition_count The partition count. * @param partition_index The partition index if @c partition_count is 2-4. * @param[out] scb The symbolic compressed block output. * @param[out] tmpbuf The quantized weights for plane 1. */ static float compress_symbolic_block_for_partition_1plane( const astcenc_config& config, const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, bool only_always, float tune_errorval_threshold, unsigned int partition_count, unsigned int partition_index, symbolic_compressed_block& scb, compression_working_buffers& tmpbuf ) { promise(partition_count > 0); promise(config.tune_candidate_limit > 0); promise(config.tune_refinement_limit > 0); promise(bsd.decimation_mode_count > 0); static const int free_bits_for_partition_count[5] { 0, 115 - 4, 111 - 4 - PARTITION_INDEX_BITS, 108 - 4 - PARTITION_INDEX_BITS, 105 - 4 - PARTITION_INDEX_BITS }; const auto& pi = bsd.get_partition_info(partition_count, partition_index); // Compute ideal weights and endpoint colors, with no quantization or decimation endpoints_and_weights& ei = tmpbuf.ei1; endpoints_and_weights *eix = tmpbuf.eix1; compute_ideal_colors_and_weights_1plane(bsd, blk, ewb, pi, ei); // Compute ideal weights and endpoint colors for every decimation float *dec_weights_ideal_value = tmpbuf.dec_weights_ideal_value; float *dec_weights_ideal_sig = tmpbuf.dec_weights_ideal_sig; float *dec_weights_quant_uvalue = tmpbuf.dec_weights_quant_uvalue; uint8_t *dec_weights_quant_pvalue = tmpbuf.dec_weights_quant_pvalue; // For each decimation mode, compute an ideal set of weights with no quantization unsigned int max_decimation_modes = only_always ? bsd.always_decimation_mode_count : bsd.decimation_mode_count; promise(max_decimation_modes > 0); for (unsigned int i = 0; i < max_decimation_modes; i++) { const auto& dm = bsd.get_decimation_mode(i); if (dm.maxprec_1plane < 0 || !dm.percentile_hit) { continue; } const auto& di = bsd.get_decimation_info(i); compute_ideal_weights_for_decimation( ei, eix[i], di, dec_weights_ideal_value + i * BLOCK_MAX_WEIGHTS, dec_weights_ideal_sig + i * BLOCK_MAX_WEIGHTS); } // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal // weight pair, compute the smallest weight that will result in a color value greater than 1 vfloat4 min_ep(10.0f); for (unsigned int i = 0; i < partition_count; i++) { vfloat4 ep = (vfloat4(1.0f) - ei.ep.endpt0[i]) / (ei.ep.endpt1[i] - ei.ep.endpt0[i]); vmask4 use_ep = (ep > vfloat4(0.5f)) & (ep < min_ep); min_ep = select(min_ep, ep, use_ep); } float min_wt_cutoff = hmin_s(min_ep); // For each mode, use the angular method to compute a shift float weight_low_value[WEIGHTS_MAX_BLOCK_MODES]; float weight_high_value[WEIGHTS_MAX_BLOCK_MODES]; compute_angular_endpoints_1plane( config.tune_low_weight_count_limit, only_always, bsd, dec_weights_ideal_value, dec_weights_ideal_sig, weight_low_value, weight_high_value); // For each mode (which specifies a decimation and a quantization): // * Compute number of bits needed for the quantized weights // * Generate an optimized set of quantized weights // * Compute quantization errors for the mode int qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES]; float qwt_errors[WEIGHTS_MAX_BLOCK_MODES]; for (unsigned int i = 0; i < bsd.block_mode_count; ++i) { qwt_errors[i] = 1e38f; } unsigned int max_block_modes = only_always ? bsd.always_block_mode_count : bsd.block_mode_count; promise(max_block_modes > 0); for (unsigned int i = 0; i < max_block_modes; ++i) { const block_mode& bm = bsd.block_modes[i]; if (bm.is_dual_plane || !bm.percentile_hit) { continue; } if (weight_high_value[i] > 1.02f * min_wt_cutoff) { weight_high_value[i] = 1.0f; } int decimation_mode = bm.decimation_mode; const auto& di = bsd.get_decimation_info(decimation_mode); // Compute weight bitcount for the mode unsigned int bits_used_by_weights = get_ise_sequence_bitcount( di.weight_count, bm.get_weight_quant_mode()); int bitcount = free_bits_for_partition_count[partition_count] - bits_used_by_weights; if (bitcount <= 0) { continue; } qwt_bitcounts[i] = bitcount; // Generate the optimized set of weights for the weight mode compute_quantized_weights_for_decimation( di, weight_low_value[i], weight_high_value[i], dec_weights_ideal_value + BLOCK_MAX_WEIGHTS * decimation_mode, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i, dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * i, bm.get_weight_quant_mode()); // Compute weight quantization errors for the block mode qwt_errors[i] = compute_error_of_weight_set_1plane( eix[decimation_mode], di, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i); } // Decide the optimal combination of color endpoint encodings and weight encodings int partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; unsigned int candidate_count = compute_ideal_endpoint_formats( bsd, pi, blk, ewb, ei.ep, qwt_bitcounts, qwt_errors, config.tune_candidate_limit, partition_format_specifiers, block_mode_index, color_quant_level, color_quant_level_mod); // Iterate over the N believed-to-be-best modes to find out which one is actually best float best_errorval_in_mode = ERROR_CALC_DEFAULT; float best_errorval_in_scb = scb.errorval; for (unsigned int i = 0; i < candidate_count; i++) { TRACE_NODE(node0, "candidate"); const int bm_packed_index = block_mode_index[i]; assert(bm_packed_index >= 0 && bm_packed_index < (int)bsd.block_mode_count); const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; int decimation_mode = qw_bm.decimation_mode; int weight_quant_mode = qw_bm.quant_mode; const auto& di = bsd.get_decimation_info(decimation_mode); promise(di.weight_count > 0); trace_add_data("weight_x", di.weight_x); trace_add_data("weight_y", di.weight_y); trace_add_data("weight_z", di.weight_z); trace_add_data("weight_quant", weight_quant_mode); // Recompute the ideal color endpoints before storing them vfloat4 rgbs_colors[BLOCK_MAX_PARTITIONS]; vfloat4 rgbo_colors[BLOCK_MAX_PARTITIONS]; symbolic_compressed_block workscb; uint8_t* u8_weight_src = dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * bm_packed_index; for (unsigned int j = 0; j < di.weight_count; j++) { workscb.weights[j] = u8_weight_src[j]; } for (unsigned int l = 0; l < config.tune_refinement_limit; l++) { recompute_ideal_colors_1plane( blk, ewb, pi, di, weight_quant_mode, workscb.weights, eix[decimation_mode].ep, rgbs_colors, rgbo_colors); // Quantize the chosen color for (unsigned int j = 0; j < partition_count; j++) { workscb.color_formats[j] = pack_color_endpoints( eix[decimation_mode].ep.endpt0[j], eix[decimation_mode].ep.endpt1[j], rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], workscb.color_values[j], (quant_method)color_quant_level[i]); } // If all the color endpoint modes are the same, we get a few more bits to store colors; // let's see if we can take advantage of this: requantize all the colors and see if the // endpoint modes remain the same. workscb.color_formats_matched = 0; if ((partition_count >= 2 && workscb.color_formats[0] == workscb.color_formats[1] && color_quant_level[i] != color_quant_level_mod[i]) && (partition_count == 2 || (workscb.color_formats[0] == workscb.color_formats[2] && (partition_count == 3 || (workscb.color_formats[0] == workscb.color_formats[3]))))) { uint8_t colorvals[BLOCK_MAX_PARTITIONS][12]; uint8_t color_formats_mod[BLOCK_MAX_PARTITIONS] { 0 }; for (unsigned int j = 0; j < partition_count; j++) { color_formats_mod[j] = pack_color_endpoints( eix[decimation_mode].ep.endpt0[j], eix[decimation_mode].ep.endpt1[j], rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], colorvals[j], (quant_method)color_quant_level_mod[i]); } if (color_formats_mod[0] == color_formats_mod[1] && (partition_count == 2 || (color_formats_mod[0] == color_formats_mod[2] && (partition_count == 3 || (color_formats_mod[0] == color_formats_mod[3]))))) { workscb.color_formats_matched = 1; for (unsigned int j = 0; j < BLOCK_MAX_PARTITIONS; j++) { for (unsigned int k = 0; k < 8; k++) { workscb.color_values[j][k] = colorvals[j][k]; } workscb.color_formats[j] = color_formats_mod[j]; } } } // Store header fields workscb.partition_count = static_cast(partition_count); workscb.partition_index = static_cast(partition_index); workscb.plane2_component = -1; workscb.quant_mode = workscb.color_formats_matched ? color_quant_level_mod[i] : color_quant_level[i]; workscb.block_mode = qw_bm.mode_index; workscb.block_type = SYM_BTYPE_NONCONST; if (workscb.quant_mode < QUANT_6) { workscb.block_type = SYM_BTYPE_ERROR; } // Pre-realign test if (l == 0) { float errorval = compute_symbolic_block_difference(config, bsd, workscb, blk, ewb); if (errorval == -ERROR_CALC_DEFAULT) { errorval = -errorval; workscb.block_type = SYM_BTYPE_ERROR; } trace_add_data("error_prerealign", errorval); best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); // Average refinement improvement is 3.5% per iteration (allow 5%), but the first // iteration can help more so we give it a extra 10% leeway. Use this knowledge to // drive a heuristic to skip blocks that are unlikely to catch up with the best // block we have already. unsigned int iters_remaining = config.tune_refinement_limit - l; float threshold = (0.05f * static_cast(iters_remaining)) + 1.1f; if (errorval > (threshold * best_errorval_in_scb)) { break; } if (errorval < best_errorval_in_scb) { best_errorval_in_scb = errorval; workscb.errorval = errorval; scb = workscb; if (errorval < tune_errorval_threshold) { // Skip remaining candidates - this is "good enough" i = candidate_count; break; } } } // Perform a final pass over the weights to try to improve them. bool adjustments = realign_weights( config.profile, bsd, blk, ewb, workscb, workscb.weights, nullptr); // Post-realign test float errorval = compute_symbolic_block_difference(config, bsd, workscb, blk, ewb); if (errorval == -ERROR_CALC_DEFAULT) { errorval = -errorval; workscb.block_type = SYM_BTYPE_ERROR; } trace_add_data("error_postrealign", errorval); best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); // Average refinement improvement is 3.5% per iteration, so skip blocks that are // unlikely to catch up with the best block we have already. Assume a 5% per step to // give benefit of the doubt ... unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; float threshold = (0.05f * static_cast(iters_remaining)) + 1.0f; if (errorval > (threshold * best_errorval_in_scb)) { break; } if (errorval < best_errorval_in_scb) { best_errorval_in_scb = errorval; workscb.errorval = errorval; scb = workscb; if (errorval < tune_errorval_threshold) { // Skip remaining candidates - this is "good enough" i = candidate_count; break; } } if (!adjustments) { break; } } } return best_errorval_in_mode; } /** * @brief Compress a block using a chosen partitioning and 2 planes of weights. * * @param config The compressor configuration. * @param bsd The block size information. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * @param tune_errorval_threshold The error value threshold. * @param plane2_component The component index for the second plane of weights. * @param[out] scb The symbolic compressed block output. * @param[out] tmpbuf The quantized weights for plane 1. */ static float compress_symbolic_block_for_partition_2planes( const astcenc_config& config, const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, float tune_errorval_threshold, unsigned int plane2_component, symbolic_compressed_block& scb, compression_working_buffers& tmpbuf ) { promise(config.tune_candidate_limit > 0); promise(config.tune_refinement_limit > 0); promise(bsd.decimation_mode_count > 0); // Compute ideal weights and endpoint colors, with no quantization or decimation endpoints_and_weights& ei1 = tmpbuf.ei1; endpoints_and_weights& ei2 = tmpbuf.ei2; endpoints_and_weights* eix1 = tmpbuf.eix1; endpoints_and_weights* eix2 = tmpbuf.eix2; compute_ideal_colors_and_weights_2planes(bsd, blk, ewb, plane2_component, ei1, ei2); // Compute ideal weights and endpoint colors for every decimation float *dec_weights_ideal_value = tmpbuf.dec_weights_ideal_value; float *dec_weights_ideal_sig = tmpbuf.dec_weights_ideal_sig; float *dec_weights_quant_uvalue = tmpbuf.dec_weights_quant_uvalue; uint8_t *dec_weights_quant_pvalue = tmpbuf.dec_weights_quant_pvalue; // For each decimation mode, compute an ideal set of weights with no quantization for (unsigned int i = 0; i < bsd.decimation_mode_count; i++) { const auto& dm = bsd.get_decimation_mode(i); if (dm.maxprec_2planes < 0 || !dm.percentile_hit) { continue; } const auto& di = bsd.get_decimation_info(i); compute_ideal_weights_for_decimation( ei1, eix1[i], di, dec_weights_ideal_value + i * BLOCK_MAX_WEIGHTS, dec_weights_ideal_sig + i * BLOCK_MAX_WEIGHTS); compute_ideal_weights_for_decimation( ei2, eix2[i], di, dec_weights_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET, dec_weights_ideal_sig + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET); } // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal // weight pair, compute the smallest weight that will result in a color value greater than 1 vfloat4 min_ep1(10.0f); vfloat4 min_ep2(10.0f); vfloat4 ep1 = (vfloat4(1.0f) - ei1.ep.endpt0[0]) / (ei1.ep.endpt1[0] - ei1.ep.endpt0[0]); vmask4 use_ep1 = (ep1 > vfloat4(0.5f)) & (ep1 < min_ep1); min_ep1 = select(min_ep1, ep1, use_ep1); vfloat4 ep2 = (vfloat4(1.0f) - ei2.ep.endpt0[0]) / (ei2.ep.endpt1[0] - ei2.ep.endpt0[0]); vmask4 use_ep2 = (ep2 > vfloat4(0.5f)) & (ep2 < min_ep2); min_ep2 = select(min_ep2, ep2, use_ep2); vfloat4 err_max(ERROR_CALC_DEFAULT); vmask4 err_mask = vint4::lane_id() == vint4(plane2_component); // Set the plane2 component to max error in ep1 min_ep1 = select(min_ep1, err_max, err_mask); float min_wt_cutoff1 = hmin_s(min_ep1); // Set the minwt2 to the plane2 component min in ep2 float min_wt_cutoff2 = hmin_s(select(err_max, min_ep2, err_mask)); float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES]; float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES]; float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES]; float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES]; compute_angular_endpoints_2planes( config.tune_low_weight_count_limit, bsd, dec_weights_ideal_value, dec_weights_ideal_sig, weight_low_value1, weight_high_value1, weight_low_value2, weight_high_value2); // For each mode (which specifies a decimation and a quantization): // * Compute number of bits needed for the quantized weights // * Generate an optimized set of quantized weights // * Compute quantization errors for the mode int qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES]; float qwt_errors[WEIGHTS_MAX_BLOCK_MODES]; for (unsigned int i = 0; i < bsd.block_mode_count; ++i) { const block_mode& bm = bsd.block_modes[i]; if (!bm.is_dual_plane || !bm.percentile_hit) { qwt_errors[i] = 1e38f; continue; } unsigned int decimation_mode = bm.decimation_mode; const auto& di = bsd.get_decimation_info(decimation_mode); if (weight_high_value1[i] > 1.02f * min_wt_cutoff1) { weight_high_value1[i] = 1.0f; } if (weight_high_value2[i] > 1.02f * min_wt_cutoff2) { weight_high_value2[i] = 1.0f; } // Compute weight bitcount for the mode unsigned int bits_used_by_weights = get_ise_sequence_bitcount( 2 * di.weight_count, bm.get_weight_quant_mode()); int bitcount = 113 - 4 - bits_used_by_weights; if (bitcount <= 0) { continue; } qwt_bitcounts[i] = bitcount; // Generate the optimized set of weights for the mode compute_quantized_weights_for_decimation( di, weight_low_value1[i], weight_high_value1[i], dec_weights_ideal_value + BLOCK_MAX_WEIGHTS * decimation_mode, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i, dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * i, bm.get_weight_quant_mode()); compute_quantized_weights_for_decimation( di, weight_low_value2[i], weight_high_value2[i], dec_weights_ideal_value + BLOCK_MAX_WEIGHTS * decimation_mode + WEIGHTS_PLANE2_OFFSET, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET, dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET, bm.get_weight_quant_mode()); // Compute weight quantization errors for the block mode qwt_errors[i] = compute_error_of_weight_set_2planes( eix1[decimation_mode], eix2[decimation_mode], di, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i, dec_weights_quant_uvalue + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET); } // Decide the optimal combination of color endpoint encodings and weight encodings int partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; endpoints epm; merge_endpoints(ei1.ep, ei2.ep, plane2_component, epm); const auto& pi = bsd.get_partition_info(1, 0); unsigned int candidate_count = compute_ideal_endpoint_formats( bsd, pi, blk, ewb, epm, qwt_bitcounts, qwt_errors, config.tune_candidate_limit, partition_format_specifiers, block_mode_index, color_quant_level, color_quant_level_mod); // Iterate over the N believed-to-be-best modes to find out which one is actually best float best_errorval_in_mode = ERROR_CALC_DEFAULT; float best_errorval_in_scb = scb.errorval; for (unsigned int i = 0; i < candidate_count; i++) { TRACE_NODE(node0, "candidate"); const int bm_packed_index = block_mode_index[i]; assert(bm_packed_index >= 0 && bm_packed_index < (int)bsd.block_mode_count); const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; int decimation_mode = qw_bm.decimation_mode; int weight_quant_mode = qw_bm.quant_mode; const auto& di = bsd.get_decimation_info(decimation_mode); promise(di.weight_count > 0); trace_add_data("weight_x", di.weight_x); trace_add_data("weight_y", di.weight_y); trace_add_data("weight_z", di.weight_z); trace_add_data("weight_quant", weight_quant_mode); // Recompute the ideal color endpoints before storing them. merge_endpoints(eix1[decimation_mode].ep, eix2[decimation_mode].ep, plane2_component, epm); vfloat4 rgbs_color; vfloat4 rgbo_color; symbolic_compressed_block workscb; uint8_t* u8_weight1_src = dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * bm_packed_index; uint8_t* u8_weight2_src = dec_weights_quant_pvalue + BLOCK_MAX_WEIGHTS * bm_packed_index + WEIGHTS_PLANE2_OFFSET; for (int j = 0; j < di.weight_count; j++) { workscb.weights[j] = u8_weight1_src[j]; workscb.weights[j + WEIGHTS_PLANE2_OFFSET] = u8_weight2_src[j]; } for (unsigned int l = 0; l < config.tune_refinement_limit; l++) { recompute_ideal_colors_2planes( blk, ewb, bsd, di, weight_quant_mode, workscb.weights, workscb.weights + WEIGHTS_PLANE2_OFFSET, epm, rgbs_color, rgbo_color, plane2_component); // Quantize the chosen color workscb.color_formats[0] = pack_color_endpoints( epm.endpt0[0], epm.endpt1[0], rgbs_color, rgbo_color, partition_format_specifiers[i][0], workscb.color_values[0], (quant_method)color_quant_level[i]); // Store header fields workscb.partition_count = 1; workscb.partition_index = 0; workscb.quant_mode = color_quant_level[i]; workscb.color_formats_matched = 0; workscb.block_mode = qw_bm.mode_index; workscb.plane2_component = static_cast(plane2_component); workscb.block_type = SYM_BTYPE_NONCONST; if (workscb.quant_mode < 4) { workscb.block_type = SYM_BTYPE_ERROR; } // Pre-realign test if (l == 0) { float errorval = compute_symbolic_block_difference(config, bsd, workscb, blk, ewb); if (errorval == -ERROR_CALC_DEFAULT) { errorval = -errorval; workscb.block_type = SYM_BTYPE_ERROR; } trace_add_data("error_prerealign", errorval); best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); // Average refinement improvement is 3.5% per iteration (allow 5%), but the first // iteration can help more so we give it a extra 10% leeway. Use this knowledge to // drive a heuristic to skip blocks that are unlikely to catch up with the best // block we have already. unsigned int iters_remaining = config.tune_refinement_limit - l; float threshold = (0.05f * static_cast(iters_remaining)) + 1.1f; if (errorval > (threshold * best_errorval_in_scb)) { break; } if (errorval < best_errorval_in_scb) { best_errorval_in_scb = errorval; workscb.errorval = errorval; scb = workscb; if (errorval < tune_errorval_threshold) { // Skip remaining candidates - this is "good enough" i = candidate_count; break; } } } // Perform a final pass over the weights to try to improve them bool adjustments = realign_weights( config.profile, bsd, blk, ewb, workscb, workscb.weights, workscb.weights + WEIGHTS_PLANE2_OFFSET); // Post-realign test float errorval = compute_symbolic_block_difference(config, bsd, workscb, blk, ewb); if (errorval == -ERROR_CALC_DEFAULT) { errorval = -errorval; workscb.block_type = SYM_BTYPE_ERROR; } trace_add_data("error_postrealign", errorval); best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); // Average refinement improvement is 3.5% per iteration, so skip blocks that are // unlikely to catch up with the best block we have already. Assume a 5% per step to // give benefit of the doubt ... unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; float threshold = (0.05f * static_cast(iters_remaining)) + 1.0f; if (errorval > (threshold * best_errorval_in_scb)) { break; } if (errorval < best_errorval_in_scb) { best_errorval_in_scb = errorval; workscb.errorval = errorval; scb = workscb; if (errorval < tune_errorval_threshold) { // Skip remaining candidates - this is "good enough" i = candidate_count; break; } } if (!adjustments) { break; } } } return best_errorval_in_mode; } /** * @brief Create a per-texel expansion of the error weights for deblocking. * * Deblockign works by assigning a higher error weight to blocks the closer they are the edge of the * block. The encourages the compressor to keep the periphery colors more accurate, which can help * reduce block artifacts when compressing gradients. * * @param[in,out] ctx The context containing both deblog memory and config. */ void expand_deblock_weights( astcenc_context& ctx ) { unsigned int xdim = ctx.config.block_x; unsigned int ydim = ctx.config.block_y; unsigned int zdim = ctx.config.block_z; float centerpos_x = static_cast(xdim - 1) * 0.5f; float centerpos_y = static_cast(ydim - 1) * 0.5f; float centerpos_z = static_cast(zdim - 1) * 0.5f; float *bef = ctx.deblock_weights; for (unsigned int z = 0; z < zdim; z++) { for (unsigned int y = 0; y < ydim; y++) { for (unsigned int x = 0; x < xdim; x++) { float xdif = (static_cast(x) - centerpos_x) / static_cast(xdim); float ydif = (static_cast(y) - centerpos_y) / static_cast(ydim); float zdif = (static_cast(z) - centerpos_z) / static_cast(zdim); float wdif = 0.36f; float dist = astc::sqrt(xdif * xdif + ydif * ydif + zdif * zdif + wdif * wdif); *bef = astc::pow(dist, ctx.config.b_deblock_weight); bef++; } } } } /** * @brief Create a per-texel and per-channel expansion of the error weights. * * This approach creates relatively large error block tables, but it allows a very flexible level of * control over how specific texels and channels are prioritized by the compressor. * * @param ctx The compressor context and configuration. * @param image The input image information. * @param bsd The block size information. * @param blk The image block color data to compress. * @param[out] ewb The image block weighted error data. * * @return Return the total error weight sum for all texels and channels. */ static float prepare_error_weight_block( const astcenc_context& ctx, const astcenc_image& image, const block_size_descriptor& bsd, const image_block& blk, error_weight_block& ewb ) { unsigned int idx = 0; bool any_mean_stdev_weight = ctx.config.v_rgb_mean != 0.0f || ctx.config.v_rgb_stdev != 0.0f || \ ctx.config.v_a_mean != 0.0f || ctx.config.v_a_stdev != 0.0f; vfloat4 color_weights(ctx.config.cw_r_weight, ctx.config.cw_g_weight, ctx.config.cw_b_weight, ctx.config.cw_a_weight); // This works because HDR is imposed globally at compression time unsigned int rgb_lns = blk.rgb_lns[0]; unsigned int a_lns = blk.alpha_lns[0]; vint4 use_lns(rgb_lns, rgb_lns, rgb_lns, a_lns); vmask4 lns_mask = use_lns != vint4::zero(); promise(bsd.xdim > 0); promise(bsd.ydim > 0); promise(bsd.zdim > 0); for (unsigned int z = 0; z < bsd.zdim; z++) { for (unsigned int y = 0; y < bsd.ydim; y++) { for (unsigned int x = 0; x < bsd.xdim; x++) { unsigned int xpos = x + blk.xpos; unsigned int ypos = y + blk.ypos; unsigned int zpos = z + blk.zpos; if (xpos >= image.dim_x || ypos >= image.dim_y || zpos >= image.dim_z) { ewb.error_weights[idx] = vfloat4(1e-11f); } else { vfloat4 derv(65535.0f); // Compute derivative if we have any use of LNS if (any(lns_mask)) { vfloat4 data = blk.texel(idx); vint4 datai = lns_to_sf16(float_to_int(data)); vfloat4 dataf = float16_to_float(datai); dataf = max(dataf, 6e-5f); vfloat4 data_lns1 = dataf * 1.05f; data_lns1 = float_to_lns(data_lns1); vfloat4 data_lns2 = dataf; data_lns2 = float_to_lns(data_lns2); vfloat4 divisor_lns = dataf * 0.05f; // Clamp derivatives between 1/32 and 2^25 float lo = 1.0f / 32.0f; float hi = 33554432.0f; vfloat4 derv_lns = clamp(lo, hi, (data_lns1 - data_lns2) / divisor_lns); derv = select(derv, derv_lns, lns_mask); } // Compute error weight vfloat4 error_weight(ctx.config.v_rgb_base, ctx.config.v_rgb_base, ctx.config.v_rgb_base, ctx.config.v_a_base); unsigned int ydt = image.dim_x; unsigned int zdt = image.dim_x * image.dim_y; if (any_mean_stdev_weight) { vfloat4 avg = ctx.input_averages[zpos * zdt + ypos * ydt + xpos]; avg = max(avg, 6e-5f); avg = avg * avg; vfloat4 variance = ctx.input_variances[zpos * zdt + ypos * ydt + xpos]; variance = variance * variance; float favg = hadd_rgb_s(avg) * (1.0f / 3.0f); float fvar = hadd_rgb_s(variance) * (1.0f / 3.0f); float mixing = ctx.config.v_rgba_mean_stdev_mix; avg.set_lane<0>(favg * mixing + avg.lane<0>() * (1.0f - mixing)); avg.set_lane<1>(favg * mixing + avg.lane<1>() * (1.0f - mixing)); avg.set_lane<2>(favg * mixing + avg.lane<2>() * (1.0f - mixing)); variance.set_lane<0>(fvar * mixing + variance.lane<0>() * (1.0f - mixing)); variance.set_lane<1>(fvar * mixing + variance.lane<1>() * (1.0f - mixing)); variance.set_lane<2>(fvar * mixing + variance.lane<2>() * (1.0f - mixing)); vfloat4 stdev = sqrt(max(variance, 0.0f)); vfloat4 scalea(ctx.config.v_rgb_mean, ctx.config.v_rgb_mean, ctx.config.v_rgb_mean, ctx.config.v_a_mean); avg = avg * scalea; vfloat4 scales(ctx.config.v_rgb_stdev, ctx.config.v_rgb_stdev, ctx.config.v_rgb_stdev, ctx.config.v_a_stdev); stdev = stdev * scales; error_weight = error_weight + avg + stdev; error_weight = 1.0f / error_weight; } if (ctx.config.flags & ASTCENC_FLG_MAP_NORMAL) { // Convert from 0 to 1 to -1 to +1 range. float xN = ((blk.data_r[idx] * (1.0f / 65535.0f)) - 0.5f) * 2.0f; float yN = ((blk.data_a[idx] * (1.0f / 65535.0f)) - 0.5f) * 2.0f; float denom = 1.0f - xN * xN - yN * yN; denom = astc::max(denom, 0.1f); denom = 1.0f / denom; error_weight.set_lane<0>(error_weight.lane<0>() * (1.0f + xN * xN * denom)); error_weight.set_lane<3>(error_weight.lane<3>() * (1.0f + yN * yN * denom)); } if (ctx.config.flags & ASTCENC_FLG_USE_ALPHA_WEIGHT) { float alpha_scale; if (ctx.config.a_scale_radius != 0) { alpha_scale = ctx.input_alpha_averages[zpos * zdt + ypos * ydt + xpos]; } else { alpha_scale = blk.data_a[idx] * (1.0f / 65535.0f); } alpha_scale = astc::max(alpha_scale, 0.0001f); alpha_scale *= alpha_scale; error_weight.set_lane<0>(error_weight.lane<0>() * alpha_scale); error_weight.set_lane<1>(error_weight.lane<1>() * alpha_scale); error_weight.set_lane<2>(error_weight.lane<2>() * alpha_scale); } error_weight = error_weight * color_weights; error_weight = error_weight * ctx.deblock_weights[idx]; // When we loaded the block to begin with, we applied a transfer function and // computed the derivative of the transfer function. However, the error-weight // computation so far is based on the original color values, not the // transfer-function values. As such, we must multiply the error weights by the // derivative of the inverse of the transfer function, which is equivalent to // dividing by the derivative of the transfer function. error_weight = error_weight / (derv * derv * 1e-10f); ewb.error_weights[idx] = error_weight; } idx++; } } } // Small bias to avoid divide by zeros and NaN propagation later vfloat4 texel_weight_sum(1e-17f); vfloat4 error_weight_sum(1e-17f); int texels_per_block = bsd.texel_count; for (int i = 0; i < texels_per_block; i++) { texel_weight_sum += ewb.error_weights[i] * blk.texel(i); error_weight_sum += ewb.error_weights[i]; float wr = ewb.error_weights[i].lane<0>(); float wg = ewb.error_weights[i].lane<1>(); float wb = ewb.error_weights[i].lane<2>(); float wa = ewb.error_weights[i].lane<3>(); ewb.texel_weight_r[i] = wr; ewb.texel_weight_g[i] = wg; ewb.texel_weight_b[i] = wb; ewb.texel_weight_a[i] = wa; ewb.texel_weight_rg[i] = (wr + wg) * 0.5f; ewb.texel_weight_rb[i] = (wr + wb) * 0.5f; ewb.texel_weight_gb[i] = (wg + wb) * 0.5f; ewb.texel_weight_gba[i] = (wg + wb + wa) * 0.333333f; ewb.texel_weight_rba[i] = (wr + wb + wa) * 0.333333f; ewb.texel_weight_rga[i] = (wr + wg + wa) * 0.333333f; ewb.texel_weight_rgb[i] = (wr + wg + wb) * 0.333333f; ewb.texel_weight[i] = (wr + wg + wb + wa) * 0.25f; } ewb.block_error_weighted_rgba_sum = texel_weight_sum; ewb.block_error_weight_sum = error_weight_sum; return hadd_s(error_weight_sum); } /** * @brief Determine the lowest cross-channel correlation factor. * * @param texels_per_block The number of texels in a block. * @param blk The image block color data to compress. * @param ewb The image block weighted error data. * * @return Return the lowest correlation factor. */ static float prepare_block_statistics( int texels_per_block, const image_block& blk, const error_weight_block& ewb ) { // Compute covariance matrix, as a collection of 10 scalars that form the upper-triangular row // of the matrix. The matrix is symmetric, so this is all we need for this use case. float rs = 0.0f; float gs = 0.0f; float bs = 0.0f; float as = 0.0f; float rr_var = 0.0f; float gg_var = 0.0f; float bb_var = 0.0f; float aa_var = 0.0f; float rg_cov = 0.0f; float rb_cov = 0.0f; float ra_cov = 0.0f; float gb_cov = 0.0f; float ga_cov = 0.0f; float ba_cov = 0.0f; float weight_sum = 0.0f; promise(texels_per_block > 0); for (int i = 0; i < texels_per_block; i++) { float weight = ewb.texel_weight[i]; assert(weight >= 0.0f); weight_sum += weight; float r = blk.data_r[i]; float g = blk.data_g[i]; float b = blk.data_b[i]; float a = blk.data_a[i]; float rw = r * weight; rs += rw; rr_var += r * rw; rg_cov += g * rw; rb_cov += b * rw; ra_cov += a * rw; float gw = g * weight; gs += gw; gg_var += g * gw; gb_cov += b * gw; ga_cov += a * gw; float bw = b * weight; bs += bw; bb_var += b * bw; ba_cov += a * bw; float aw = a * weight; as += aw; aa_var += a * aw; } float rpt = 1.0f / astc::max(weight_sum, 1e-7f); rr_var -= rs * (rs * rpt); rg_cov -= gs * (rs * rpt); rb_cov -= bs * (rs * rpt); ra_cov -= as * (rs * rpt); gg_var -= gs * (gs * rpt); gb_cov -= bs * (gs * rpt); ga_cov -= as * (gs * rpt); bb_var -= bs * (bs * rpt); ba_cov -= as * (bs * rpt); aa_var -= as * (as * rpt); rg_cov *= astc::rsqrt(astc::max(rr_var * gg_var, 1e-30f)); rb_cov *= astc::rsqrt(astc::max(rr_var * bb_var, 1e-30f)); ra_cov *= astc::rsqrt(astc::max(rr_var * aa_var, 1e-30f)); gb_cov *= astc::rsqrt(astc::max(gg_var * bb_var, 1e-30f)); ga_cov *= astc::rsqrt(astc::max(gg_var * aa_var, 1e-30f)); ba_cov *= astc::rsqrt(astc::max(bb_var * aa_var, 1e-30f)); if (astc::isnan(rg_cov)) rg_cov = 1.0f; if (astc::isnan(rb_cov)) rb_cov = 1.0f; if (astc::isnan(ra_cov)) ra_cov = 1.0f; if (astc::isnan(gb_cov)) gb_cov = 1.0f; if (astc::isnan(ga_cov)) ga_cov = 1.0f; if (astc::isnan(ba_cov)) ba_cov = 1.0f; float lowest_correlation = astc::min(fabsf(rg_cov), fabsf(rb_cov)); lowest_correlation = astc::min(lowest_correlation, fabsf(ra_cov)); lowest_correlation = astc::min(lowest_correlation, fabsf(gb_cov)); lowest_correlation = astc::min(lowest_correlation, fabsf(ga_cov)); lowest_correlation = astc::min(lowest_correlation, fabsf(ba_cov)); // Diagnostic trace points trace_add_data("min_r", blk.data_min.lane<0>()); trace_add_data("max_r", blk.data_max.lane<0>()); trace_add_data("min_g", blk.data_min.lane<1>()); trace_add_data("max_g", blk.data_max.lane<1>()); trace_add_data("min_b", blk.data_min.lane<2>()); trace_add_data("max_b", blk.data_max.lane<2>()); trace_add_data("min_a", blk.data_min.lane<3>()); trace_add_data("max_a", blk.data_max.lane<3>()); trace_add_data("cov_rg", fabsf(rg_cov)); trace_add_data("cov_rb", fabsf(rb_cov)); trace_add_data("cov_ra", fabsf(ra_cov)); trace_add_data("cov_gb", fabsf(gb_cov)); trace_add_data("cov_ga", fabsf(ga_cov)); trace_add_data("cov_ba", fabsf(ba_cov)); return lowest_correlation; } /* See header for documentation. */ void compress_block( const astcenc_context& ctx, const astcenc_image& input_image, const image_block& blk, physical_compressed_block& pcb, compression_working_buffers& tmpbuf) { astcenc_profile decode_mode = ctx.config.profile; symbolic_compressed_block scb; error_weight_block& ewb = tmpbuf.ewb; const block_size_descriptor* bsd = ctx.bsd; float lowest_correl; TRACE_NODE(node0, "block"); trace_add_data("pos_x", blk.xpos); trace_add_data("pos_y", blk.ypos); trace_add_data("pos_z", blk.zpos); // Set stricter block targets for luminance data as we have more bits to play with bool block_is_l = blk.is_luminance(); float block_is_l_scale = block_is_l ? 1.0f / 1.5f : 1.0f; // Set slightly stricter block targets for lumalpha data as we have more bits to play with bool block_is_la = blk.is_luminancealpha(); float block_is_la_scale = block_is_la ? 1.0f / 1.05f : 1.0f; bool block_skip_two_plane = false; // Default max partition, but +1 if only have 1 or 2 active components int max_partitions = ctx.config.tune_partition_count_limit; if (block_is_l || block_is_la) { max_partitions = astc::min(max_partitions + 1, 4); } #if defined(ASTCENC_DIAGNOSTICS) // Do this early in diagnostic builds so we can dump uniform metrics // for every block. Do it later in release builds to avoid redundant work! float error_weight_sum = prepare_error_weight_block(ctx, input_image, *bsd, blk, ewb); float error_threshold = ctx.config.tune_db_limit * error_weight_sum * block_is_l_scale * block_is_la_scale; lowest_correl = prepare_block_statistics(bsd->texel_count, blk, ewb); trace_add_data("lowest_correl", lowest_correl); trace_add_data("tune_error_threshold", error_threshold); #endif // Detected a constant-color block if (all(blk.data_min == blk.data_max)) { TRACE_NODE(node1, "pass"); trace_add_data("partition_count", 0); trace_add_data("plane_count", 1); scb.partition_count = 0; // Encode as FP16 if using HDR if ((decode_mode == ASTCENC_PRF_HDR) || (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A)) { scb.block_type = SYM_BTYPE_CONST_F16; vint4 color_f16 = float_to_float16(blk.origin_texel); store(color_f16, scb.constant_color); } // Encode as UNORM16 if NOT using HDR else { scb.block_type = SYM_BTYPE_CONST_U16; vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; vint4 color_u16 = float_to_int_rtn(color_f32); store(color_u16, scb.constant_color); } trace_add_data("exit", "quality hit"); symbolic_to_physical(*bsd, scb, pcb); return; } #if !defined(ASTCENC_DIAGNOSTICS) float error_weight_sum = prepare_error_weight_block(ctx, input_image, *bsd, blk, ewb); float error_threshold = ctx.config.tune_db_limit * error_weight_sum * block_is_l_scale * block_is_la_scale; #endif // Set SCB and mode errors to a very high error value scb.errorval = ERROR_CALC_DEFAULT; scb.block_type = SYM_BTYPE_ERROR; float best_errorvals_for_pcount[BLOCK_MAX_PARTITIONS] { ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT }; float exit_thresholds_for_pcount[BLOCK_MAX_PARTITIONS] { 0.0f, ctx.config.tune_2_partition_early_out_limit_factor, ctx.config.tune_3_partition_early_out_limit_factor, 0.0f }; // Trial using 1 plane of weights and 1 partition. // Most of the time we test it twice, first with a mode cutoff of 0 and then with the specified // mode cutoff. This causes an early-out that speeds up encoding of easy blocks. However, this // optimization is disabled for 4x4 and 5x4 blocks where it nearly always slows down the // compression and slightly reduces image quality. float errorval_mult[2] { 1.0f / ctx.config.tune_mode0_mse_overshoot, 1.0f }; static const float errorval_overshoot = 1.0f / ctx.config.tune_refinement_mse_overshoot; // Only enable MODE0 fast path (trial 0) if 2D and more than 25 texels int start_trial = 1; if ((bsd->texel_count >= TUNE_MIN_TEXELS_MODE0_FASTPATH) && (bsd->zdim == 1)) { start_trial = 0; } for (int i = start_trial; i < 2; i++) { TRACE_NODE(node1, "pass"); trace_add_data("partition_count", 1); trace_add_data("plane_count", 1); trace_add_data("search_mode", i); float errorval = compress_symbolic_block_for_partition_1plane( ctx.config, *bsd, blk, ewb, i == 0, error_threshold * errorval_mult[i] * errorval_overshoot, 1, 0, scb, tmpbuf); best_errorvals_for_pcount[0] = astc::min(best_errorvals_for_pcount[0], errorval); if (errorval < (error_threshold * errorval_mult[i])) { trace_add_data("exit", "quality hit"); goto END_OF_TESTS; } } #if !defined(ASTCENC_DIAGNOSTICS) lowest_correl = prepare_block_statistics(bsd->texel_count, blk, ewb); #endif block_skip_two_plane = lowest_correl > ctx.config.tune_2_plane_early_out_limit_correlation; // Test the four possible 1-partition, 2-planes modes. Do this in reverse, as // alpha is the most likely to be non-correlated if it is present in the data. for (int i = BLOCK_MAX_COMPONENTS - 1; i >= 0; i--) { TRACE_NODE(node1, "pass"); trace_add_data("partition_count", 1); trace_add_data("plane_count", 2); trace_add_data("plane_component", i); if (block_skip_two_plane) { trace_add_data("skip", "tune_2_plane_early_out_limit_correlation"); continue; } if (blk.grayscale && i != 3) { trace_add_data("skip", "grayscale block"); continue; } if (blk.is_constant_channel(i)) { trace_add_data("skip", "constant component"); continue; } float errorval = compress_symbolic_block_for_partition_2planes( ctx.config, *bsd, blk, ewb, error_threshold * errorval_overshoot, i, scb, tmpbuf); // If attempting two planes is much worse than the best one plane result // then further two plane searches are unlikely to help so move on ... if (errorval > (best_errorvals_for_pcount[0] * 2.0f)) { break; } if (errorval < error_threshold) { trace_add_data("exit", "quality hit"); goto END_OF_TESTS; } } // Find best blocks for 2, 3 and 4 partitions for (int partition_count = 2; partition_count <= max_partitions; partition_count++) { unsigned int partition_indices_1plane[2] { 0, 0 }; find_best_partition_candidates(*bsd, blk, ewb, partition_count, ctx.config.tune_partition_index_limit, partition_indices_1plane[0], partition_indices_1plane[1]); for (int i = 0; i < 2; i++) { TRACE_NODE(node1, "pass"); trace_add_data("partition_count", partition_count); trace_add_data("partition_index", partition_indices_1plane[i]); trace_add_data("plane_count", 1); trace_add_data("search_mode", i); float errorval = compress_symbolic_block_for_partition_1plane( ctx.config, *bsd, blk, ewb, false, error_threshold * errorval_overshoot, partition_count, partition_indices_1plane[i], scb, tmpbuf); best_errorvals_for_pcount[partition_count - 1] = astc::min(best_errorvals_for_pcount[partition_count - 1], errorval); if (errorval < error_threshold) { trace_add_data("exit", "quality hit"); goto END_OF_TESTS; } } // If using N partitions doesn't improve much over using N-1 partitions then skip trying N+1 float best_error = best_errorvals_for_pcount[partition_count - 1]; float best_error_in_prev = best_errorvals_for_pcount[partition_count - 2]; float best_error_scale = exit_thresholds_for_pcount[partition_count - 1]; if (best_error > (best_error_in_prev * best_error_scale)) { trace_add_data("skip", "tune_partition_early_out_limit_factor"); goto END_OF_TESTS; } } trace_add_data("exit", "quality not hit"); END_OF_TESTS: // Compress to a physical block symbolic_to_physical(*bsd, scb, pcb); } #endif