// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "box2d/b2_body.h" #include "box2d/b2_draw.h" #include "box2d/b2_wheel_joint.h" #include "box2d/b2_time_step.h" // Linear constraint (point-to-line) // d = pB - pA = xB + rB - xA - rA // C = dot(ay, d) // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA)) // = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB) // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)] // Spring linear constraint // C = dot(ax, d) // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB) // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)] // Motor rotational constraint // Cdot = wB - wA // J = [0 0 -1 0 0 1] void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) { bodyA = bA; bodyB = bB; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); localAxisA = bodyA->GetLocalVector(axis); } b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_localXAxisA = def->localAxisA; m_localYAxisA = b2Cross(1.0f, m_localXAxisA); m_mass = 0.0f; m_impulse = 0.0f; m_motorMass = 0.0f; m_motorImpulse = 0.0f; m_springMass = 0.0f; m_springImpulse = 0.0f; m_axialMass = 0.0f; m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; m_lowerTranslation = def->lowerTranslation; m_upperTranslation = def->upperTranslation; m_enableLimit = def->enableLimit; m_maxMotorTorque = def->maxMotorTorque; m_motorSpeed = def->motorSpeed; m_enableMotor = def->enableMotor; m_bias = 0.0f; m_gamma = 0.0f; m_ax.SetZero(); m_ay.SetZero(); m_stiffness = def->stiffness; m_damping = def->damping; } void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); // Compute the effective masses. b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = cB + rB - cA - rA; // Point to line constraint { m_ay = b2Mul(qA, m_localYAxisA); m_sAy = b2Cross(d + rA, m_ay); m_sBy = b2Cross(rB, m_ay); m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; if (m_mass > 0.0f) { m_mass = 1.0f / m_mass; } } // Spring constraint m_ax = b2Mul(qA, m_localXAxisA); m_sAx = b2Cross(d + rA, m_ax); m_sBx = b2Cross(rB, m_ax); const float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; if (invMass > 0.0f) { m_axialMass = 1.0f / invMass; } else { m_axialMass = 0.0f; } m_springMass = 0.0f; m_bias = 0.0f; m_gamma = 0.0f; if (m_stiffness > 0.0f && invMass > 0.0f) { m_springMass = 1.0f / invMass; float C = b2Dot(d, m_ax); // magic formulas float h = data.step.dt; m_gamma = h * (m_damping + h * m_stiffness); if (m_gamma > 0.0f) { m_gamma = 1.0f / m_gamma; } m_bias = C * h * m_stiffness * m_gamma; m_springMass = invMass + m_gamma; if (m_springMass > 0.0f) { m_springMass = 1.0f / m_springMass; } } else { m_springImpulse = 0.0f; } if (m_enableLimit) { m_translation = b2Dot(m_ax, d); } else { m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; } if (m_enableMotor) { m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } } else { m_motorMass = 0.0f; m_motorImpulse = 0.0f; } if (data.step.warmStarting) { // Account for variable time step. m_impulse *= data.step.dtRatio; m_springImpulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; float axialImpulse = m_springImpulse + m_lowerImpulse - m_upperImpulse; b2Vec2 P = m_impulse * m_ay + axialImpulse * m_ax; float LA = m_impulse * m_sAy + axialImpulse * m_sAx + m_motorImpulse; float LB = m_impulse * m_sBy + axialImpulse * m_sBx + m_motorImpulse; vA -= m_invMassA * P; wA -= m_invIA * LA; vB += m_invMassB * P; wB += m_invIB * LB; } else { m_impulse = 0.0f; m_springImpulse = 0.0f; m_motorImpulse = 0.0f; m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) { float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; // Solve spring constraint { float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; float impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); m_springImpulse += impulse; b2Vec2 P = impulse * m_ax; float LA = impulse * m_sAx; float LB = impulse * m_sBx; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } // Solve rotational motor constraint { float Cdot = wB - wA - m_motorSpeed; float impulse = -m_motorMass * Cdot; float oldImpulse = m_motorImpulse; float maxImpulse = data.step.dt * m_maxMotorTorque; m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } if (m_enableLimit) { // Lower limit { float C = m_translation - m_lowerTranslation; float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); float oldImpulse = m_lowerImpulse; m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f); impulse = m_lowerImpulse - oldImpulse; b2Vec2 P = impulse * m_ax; float LA = impulse * m_sAx; float LB = impulse * m_sBx; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } // Upper limit // Note: signs are flipped to keep C positive when the constraint is satisfied. // This also keeps the impulse positive when the limit is active. { float C = m_upperTranslation - m_translation; float Cdot = b2Dot(m_ax, vA - vB) + m_sAx * wA - m_sBx * wB; float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt); float oldImpulse = m_upperImpulse; m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f); impulse = m_upperImpulse - oldImpulse; b2Vec2 P = impulse * m_ax; float LA = impulse * m_sAx; float LB = impulse * m_sBx; vA += mA * P; wA += iA * LA; vB -= mB * P; wB -= iB * LB; } } // Solve point to line constraint { float Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; float impulse = -m_mass * Cdot; m_impulse += impulse; b2Vec2 P = impulse * m_ay; float LA = impulse * m_sAy; float LB = impulse * m_sBy; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; float linearError = 0.0f; if (m_enableLimit) { b2Rot qA(aA), qB(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; b2Vec2 ax = b2Mul(qA, m_localXAxisA); float sAx = b2Cross(d + rA, m_ax); float sBx = b2Cross(rB, m_ax); float C = 0.0f; float translation = b2Dot(ax, d); if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) { C = translation; } else if (translation <= m_lowerTranslation) { C = b2Min(translation - m_lowerTranslation, 0.0f); } else if (translation >= m_upperTranslation) { C = b2Max(translation - m_upperTranslation, 0.0f); } if (C != 0.0f) { float invMass = m_invMassA + m_invMassB + m_invIA * sAx * sAx + m_invIB * sBx * sBx; float impulse = 0.0f; if (invMass != 0.0f) { impulse = -C / invMass; } b2Vec2 P = impulse * ax; float LA = impulse * sAx; float LB = impulse * sBx; cA -= m_invMassA * P; aA -= m_invIA * LA; cB += m_invMassB * P; aB += m_invIB * LB; linearError = b2Abs(C); } } // Solve perpendicular constraint { b2Rot qA(aA), qB(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; b2Vec2 ay = b2Mul(qA, m_localYAxisA); float sAy = b2Cross(d + rA, ay); float sBy = b2Cross(rB, ay); float C = b2Dot(d, ay); float invMass = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; float impulse = 0.0f; if (invMass != 0.0f) { impulse = - C / invMass; } b2Vec2 P = impulse * ay; float LA = impulse * sAy; float LB = impulse * sBy; cA -= m_invMassA * P; aA -= m_invIA * LA; cB += m_invMassB * P; aB += m_invIB * LB; linearError = b2Max(linearError, b2Abs(C)); } data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return linearError <= b2_linearSlop; } b2Vec2 b2WheelJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2WheelJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2WheelJoint::GetReactionForce(float inv_dt) const { return inv_dt * (m_impulse * m_ay + (m_springImpulse + m_lowerImpulse - m_upperImpulse) * m_ax); } float b2WheelJoint::GetReactionTorque(float inv_dt) const { return inv_dt * m_motorImpulse; } float b2WheelJoint::GetJointTranslation() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); b2Vec2 d = pB - pA; b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); float translation = b2Dot(d, axis); return translation; } float b2WheelJoint::GetJointLinearSpeed() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); b2Vec2 p1 = bA->m_sweep.c + rA; b2Vec2 p2 = bB->m_sweep.c + rB; b2Vec2 d = p2 - p1; b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); b2Vec2 vA = bA->m_linearVelocity; b2Vec2 vB = bB->m_linearVelocity; float wA = bA->m_angularVelocity; float wB = bB->m_angularVelocity; float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); return speed; } float b2WheelJoint::GetJointAngle() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; return bB->m_sweep.a - bA->m_sweep.a; } float b2WheelJoint::GetJointAngularSpeed() const { float wA = m_bodyA->m_angularVelocity; float wB = m_bodyB->m_angularVelocity; return wB - wA; } bool b2WheelJoint::IsLimitEnabled() const { return m_enableLimit; } void b2WheelJoint::EnableLimit(bool flag) { if (flag != m_enableLimit) { SET_AWAKE_OR_NONE(m_bodyA); SET_AWAKE_OR_NONE(m_bodyB); m_enableLimit = flag; m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; } } float b2WheelJoint::GetLowerLimit() const { return m_lowerTranslation; } float b2WheelJoint::GetUpperLimit() const { return m_upperTranslation; } void b2WheelJoint::SetLimits(float lower, float upper) { b2Assert(lower <= upper); if (lower != m_lowerTranslation || upper != m_upperTranslation) { SET_AWAKE_OR_NONE(m_bodyA); SET_AWAKE_OR_NONE(m_bodyB); m_lowerTranslation = lower; m_upperTranslation = upper; m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; } } bool b2WheelJoint::IsMotorEnabled() const { return m_enableMotor; } void b2WheelJoint::EnableMotor(bool flag) { if (flag != m_enableMotor) { SET_AWAKE_OR_NONE(m_bodyA); SET_AWAKE_OR_NONE(m_bodyB); m_enableMotor = flag; } } void b2WheelJoint::SetMotorSpeed(float speed) { if (speed != m_motorSpeed) { SET_AWAKE_OR_NONE(m_bodyA); SET_AWAKE_OR_NONE(m_bodyB); m_motorSpeed = speed; } } void b2WheelJoint::SetMaxMotorTorque(float torque) { if (torque != m_maxMotorTorque) { SET_AWAKE_OR_NONE(m_bodyA); SET_AWAKE_OR_NONE(m_bodyB); m_maxMotorTorque = torque; } } float b2WheelJoint::GetMotorTorque(float inv_dt) const { return inv_dt * m_motorImpulse; } void b2WheelJoint::SetStiffness(float stiffness) { m_stiffness = stiffness; } float b2WheelJoint::GetStiffness() const { return m_stiffness; } void b2WheelJoint::SetDamping(float damping) { m_damping = damping; } float b2WheelJoint::GetDamping() const { return m_damping; } void b2WheelJoint::Dump() { // FLT_DECIMAL_DIG == 9 int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Dump(" b2WheelJointDef jd;\n"); b2Dump(" jd.bodyA = bodies[%d];\n", indexA); b2Dump(" jd.bodyB = bodies[%d];\n", indexB); b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y); b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor); b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed); b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque); b2Dump(" jd.stiffness = %.9g;\n", m_stiffness); b2Dump(" jd.damping = %.9g;\n", m_damping); b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); } /// void b2WheelJoint::Draw(b2Draw* draw) const { const b2Transform& xfA = m_bodyA->GetTransform(); const b2Transform& xfB = m_bodyB->GetTransform(); b2Vec2 pA = b2Mul(xfA, m_localAnchorA); b2Vec2 pB = b2Mul(xfB, m_localAnchorB); b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA); b2Color c1(0.7f, 0.7f, 0.7f); b2Color c2(0.3f, 0.9f, 0.3f); b2Color c3(0.9f, 0.3f, 0.3f); b2Color c4(0.3f, 0.3f, 0.9f); b2Color c5(0.4f, 0.4f, 0.4f); draw->DrawSegment(pA, pB, c5); if (m_enableLimit) { b2Vec2 lower = pA + m_lowerTranslation * axis; b2Vec2 upper = pA + m_upperTranslation * axis; b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA); draw->DrawSegment(lower, upper, c1); draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2); draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3); } else { draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1); } draw->DrawPoint(pA, 5.0f, c1); draw->DrawPoint(pB, 5.0f, c4); }