/* * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const { void* mem = allocator->Allocate(sizeof(b2PolygonShape)); b2PolygonShape* clone = new (mem) b2PolygonShape; *clone = *this; return clone; } void b2PolygonShape::SetAsBox(float32 hx, float32 hy) { m_vertexCount = 4; m_vertices[0].Set(-hx, -hy); m_vertices[1].Set( hx, -hy); m_vertices[2].Set( hx, hy); m_vertices[3].Set(-hx, hy); m_normals[0].Set(0.0f, -1.0f); m_normals[1].Set(1.0f, 0.0f); m_normals[2].Set(0.0f, 1.0f); m_normals[3].Set(-1.0f, 0.0f); m_centroid.SetZero(); } void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) { m_vertexCount = 4; m_vertices[0].Set(-hx, -hy); m_vertices[1].Set( hx, -hy); m_vertices[2].Set( hx, hy); m_vertices[3].Set(-hx, hy); m_normals[0].Set(0.0f, -1.0f); m_normals[1].Set(1.0f, 0.0f); m_normals[2].Set(0.0f, 1.0f); m_normals[3].Set(-1.0f, 0.0f); m_centroid = center; b2Transform xf; xf.position = center; xf.R.Set(angle); // Transform vertices and normals. for (int32 i = 0; i < m_vertexCount; ++i) { m_vertices[i] = b2Mul(xf, m_vertices[i]); m_normals[i] = b2Mul(xf.R, m_normals[i]); } } void b2PolygonShape::SetAsEdge(const b2Vec2& v1, const b2Vec2& v2) { m_vertexCount = 2; m_vertices[0] = v1; m_vertices[1] = v2; m_centroid = 0.5f * (v1 + v2); m_normals[0] = b2Cross(v2 - v1, 1.0f); m_normals[0].Normalize(); m_normals[1] = -m_normals[0]; } static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) { b2Assert(count >= 2); b2Vec2 c; c.Set(0.0f, 0.0f); float32 area = 0.0f; if (count == 2) { c = 0.5f * (vs[0] + vs[1]); return c; } // pRef is the reference point for forming triangles. // It's location doesn't change the result (except for rounding error). b2Vec2 pRef(0.0f, 0.0f); #if 0 // This code would put the reference point inside the polygon. for (int32 i = 0; i < count; ++i) { pRef += vs[i]; } pRef *= 1.0f / count; #endif const float32 inv3 = 1.0f / 3.0f; for (int32 i = 0; i < count; ++i) { // Triangle vertices. b2Vec2 p1 = pRef; b2Vec2 p2 = vs[i]; b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; b2Vec2 e1 = p2 - p1; b2Vec2 e2 = p3 - p1; float32 D = b2Cross(e1, e2); float32 triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid c += triangleArea * inv3 * (p1 + p2 + p3); } // Centroid b2Assert(area > b2_epsilon); c *= 1.0f / area; return c; } void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) { b2Assert(2 <= count && count <= b2_maxPolygonVertices); m_vertexCount = count; // Copy vertices. for (int32 i = 0; i < m_vertexCount; ++i) { m_vertices[i] = vertices[i]; } // Compute normals. Ensure the edges have non-zero length. for (int32 i = 0; i < m_vertexCount; ++i) { int32 i1 = i; int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0; b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); m_normals[i] = b2Cross(edge, 1.0f); m_normals[i].Normalize(); } #ifdef _DEBUG // Ensure the polygon is convex and the interior // is to the left of each edge. for (int32 i = 0; i < m_vertexCount; ++i) { int32 i1 = i; int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0; b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; for (int32 j = 0; j < m_vertexCount; ++j) { // Don't check vertices on the current edge. if (j == i1 || j == i2) { continue; } b2Vec2 r = m_vertices[j] - m_vertices[i1]; // Your polygon is non-convex (it has an indentation) or // has colinear edges. float32 s = b2Cross(edge, r); b2Assert(s > 0.0f); } } #endif // Compute the polygon centroid. m_centroid = ComputeCentroid(m_vertices, m_vertexCount); } bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const { b2Vec2 pLocal = b2MulT(xf.R, p - xf.position); for (int32 i = 0; i < m_vertexCount; ++i) { float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); if (dot > 0.0f) { return false; } } return true; } bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, const b2Transform& xf) const { // Put the ray into the polygon's frame of reference. b2Vec2 p1 = b2MulT(xf.R, input.p1 - xf.position); b2Vec2 p2 = b2MulT(xf.R, input.p2 - xf.position); b2Vec2 d = p2 - p1; if (m_vertexCount == 2) { b2Vec2 v1 = m_vertices[0]; b2Vec2 v2 = m_vertices[1]; b2Vec2 normal = m_normals[0]; // q = p1 + t * d // dot(normal, q - v1) = 0 // dot(normal, p1 - v1) + t * dot(normal, d) = 0 float32 numerator = b2Dot(normal, v1 - p1); float32 denominator = b2Dot(normal, d); if (denominator == 0.0f) { return false; } float32 t = numerator / denominator; if (t < 0.0f || 1.0f < t) { return false; } b2Vec2 q = p1 + t * d; // q = v1 + s * r // s = dot(q - v1, r) / dot(r, r) b2Vec2 r = v2 - v1; float32 rr = b2Dot(r, r); if (rr == 0.0f) { return false; } float32 s = b2Dot(q - v1, r) / rr; if (s < 0.0f || 1.0f < s) { return false; } output->fraction = t; if (numerator > 0.0f) { output->normal = -normal; } else { output->normal = normal; } return true; } else { float32 lower = 0.0f, upper = input.maxFraction; int32 index = -1; for (int32 i = 0; i < m_vertexCount; ++i) { // p = p1 + a * d // dot(normal, p - v) = 0 // dot(normal, p1 - v) + a * dot(normal, d) = 0 float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); float32 denominator = b2Dot(m_normals[i], d); if (denominator == 0.0f) { if (numerator < 0.0f) { return false; } } else { // Note: we want this predicate without division: // lower < numerator / denominator, where denominator < 0 // Since denominator < 0, we have to flip the inequality: // lower < numerator / denominator <==> denominator * lower > numerator. if (denominator < 0.0f && numerator < lower * denominator) { // Increase lower. // The segment enters this half-space. lower = numerator / denominator; index = i; } else if (denominator > 0.0f && numerator < upper * denominator) { // Decrease upper. // The segment exits this half-space. upper = numerator / denominator; } } // The use of epsilon here causes the assert on lower to trip // in some cases. Apparently the use of epsilon was to make edge // shapes work, but now those are handled separately. //if (upper < lower - b2_epsilon) if (upper < lower) { return false; } } b2Assert(0.0f <= lower && lower <= input.maxFraction); if (index >= 0) { output->fraction = lower; output->normal = b2Mul(xf.R, m_normals[index]); return true; } } return false; } void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf) const { b2Vec2 lower = b2Mul(xf, m_vertices[0]); b2Vec2 upper = lower; for (int32 i = 1; i < m_vertexCount; ++i) { b2Vec2 v = b2Mul(xf, m_vertices[i]); lower = b2Min(lower, v); upper = b2Max(upper, v); } b2Vec2 r(m_radius, m_radius); aabb->lowerBound = lower - r; aabb->upperBound = upper + r; } void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const { // Polygon mass, centroid, and inertia. // Let rho be the polygon density in mass per unit area. // Then: // mass = rho * int(dA) // centroid.x = (1/mass) * rho * int(x * dA) // centroid.y = (1/mass) * rho * int(y * dA) // I = rho * int((x*x + y*y) * dA) // // We can compute these integrals by summing all the integrals // for each triangle of the polygon. To evaluate the integral // for a single triangle, we make a change of variables to // the (u,v) coordinates of the triangle: // x = x0 + e1x * u + e2x * v // y = y0 + e1y * u + e2y * v // where 0 <= u && 0 <= v && u + v <= 1. // // We integrate u from [0,1-v] and then v from [0,1]. // We also need to use the Jacobian of the transformation: // D = cross(e1, e2) // // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) // // The rest of the derivation is handled by computer algebra. b2Assert(m_vertexCount >= 2); // A line segment has zero mass. if (m_vertexCount == 2) { massData->center = 0.5f * (m_vertices[0] + m_vertices[1]); massData->mass = 0.0f; massData->I = 0.0f; return; } b2Vec2 center; center.Set(0.0f, 0.0f); float32 area = 0.0f; float32 I = 0.0f; // pRef is the reference point for forming triangles. // It's location doesn't change the result (except for rounding error). b2Vec2 pRef(0.0f, 0.0f); #if 0 // This code would put the reference point inside the polygon. for (int32 i = 0; i < m_vertexCount; ++i) { pRef += m_vertices[i]; } pRef *= 1.0f / count; #endif const float32 k_inv3 = 1.0f / 3.0f; for (int32 i = 0; i < m_vertexCount; ++i) { // Triangle vertices. b2Vec2 p1 = pRef; b2Vec2 p2 = m_vertices[i]; b2Vec2 p3 = i + 1 < m_vertexCount ? m_vertices[i+1] : m_vertices[0]; b2Vec2 e1 = p2 - p1; b2Vec2 e2 = p3 - p1; float32 D = b2Cross(e1, e2); float32 triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid center += triangleArea * k_inv3 * (p1 + p2 + p3); float32 px = p1.x, py = p1.y; float32 ex1 = e1.x, ey1 = e1.y; float32 ex2 = e2.x, ey2 = e2.y; float32 intx2 = k_inv3 * (0.25f * (ex1*ex1 + ex2*ex1 + ex2*ex2) + (px*ex1 + px*ex2)) + 0.5f*px*px; float32 inty2 = k_inv3 * (0.25f * (ey1*ey1 + ey2*ey1 + ey2*ey2) + (py*ey1 + py*ey2)) + 0.5f*py*py; I += D * (intx2 + inty2); } // Total mass massData->mass = density * area; // Center of mass b2Assert(area > b2_epsilon); center *= 1.0f / area; massData->center = center; // Inertia tensor relative to the local origin. massData->I = density * I; }