/* * Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include #include #include struct b2TOIConstraint { b2Vec2 localPoints[b2_maxManifoldPoints]; b2Vec2 localNormal; b2Vec2 localPoint; b2Manifold::Type type; float32 radius; int32 pointCount; b2Body* bodyA; b2Body* bodyB; }; b2TOISolver::b2TOISolver(b2StackAllocator* allocator) { m_allocator = allocator; m_constraints = NULL; m_count = NULL; m_toiBody = NULL; } b2TOISolver::~b2TOISolver() { Clear(); } void b2TOISolver::Clear() { if (m_allocator && m_constraints) { m_allocator->Free(m_constraints); m_constraints = NULL; } } void b2TOISolver::Initialize(b2Contact** contacts, int32 count, b2Body* toiBody) { Clear(); m_count = count; m_toiBody = toiBody; m_constraints = (b2TOIConstraint*) m_allocator->Allocate(m_count * sizeof(b2TOIConstraint)); for (int32 i = 0; i < m_count; ++i) { b2Contact* contact = contacts[i]; b2Fixture* fixtureA = contact->GetFixtureA(); b2Fixture* fixtureB = contact->GetFixtureB(); b2Shape* shapeA = fixtureA->GetShape(); b2Shape* shapeB = fixtureB->GetShape(); float32 radiusA = shapeA->m_radius; float32 radiusB = shapeB->m_radius; b2Body* bodyA = fixtureA->GetBody(); b2Body* bodyB = fixtureB->GetBody(); b2Manifold* manifold = contact->GetManifold(); b2Assert(manifold->pointCount > 0); b2TOIConstraint* constraint = m_constraints + i; constraint->bodyA = bodyA; constraint->bodyB = bodyB; constraint->localNormal = manifold->localNormal; constraint->localPoint = manifold->localPoint; constraint->type = manifold->type; constraint->pointCount = manifold->pointCount; constraint->radius = radiusA + radiusB; for (int32 j = 0; j < constraint->pointCount; ++j) { b2ManifoldPoint* cp = manifold->points + j; constraint->localPoints[j] = cp->localPoint; } } } struct b2TOISolverManifold { void Initialize(b2TOIConstraint* cc, int32 index) { b2Assert(cc->pointCount > 0); switch (cc->type) { case b2Manifold::e_circles: { b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint); b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->localPoints[0]); if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon) { normal = pointB - pointA; normal.Normalize(); } else { normal.Set(1.0f, 0.0f); } point = 0.5f * (pointA + pointB); separation = b2Dot(pointB - pointA, normal) - cc->radius; } break; case b2Manifold::e_faceA: { normal = cc->bodyA->GetWorldVector(cc->localNormal); b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint); b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->localPoints[index]); separation = b2Dot(clipPoint - planePoint, normal) - cc->radius; point = clipPoint; } break; case b2Manifold::e_faceB: { normal = cc->bodyB->GetWorldVector(cc->localNormal); b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint); b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->localPoints[index]); separation = b2Dot(clipPoint - planePoint, normal) - cc->radius; point = clipPoint; // Ensure normal points from A to B normal = -normal; } break; } } b2Vec2 normal; b2Vec2 point; float32 separation; }; // Push out the toi body to provide clearance for further simulation. bool b2TOISolver::Solve(float32 baumgarte) { float32 minSeparation = 0.0f; for (int32 i = 0; i < m_count; ++i) { b2TOIConstraint* c = m_constraints + i; b2Body* bodyA = c->bodyA; b2Body* bodyB = c->bodyB; float32 massA = bodyA->m_mass; float32 massB = bodyB->m_mass; // Only the TOI body should move. if (bodyA == m_toiBody) { massB = 0.0f; } else { massA = 0.0f; } float32 invMassA = massA * bodyA->m_invMass; float32 invIA = massA * bodyA->m_invI; float32 invMassB = massB * bodyB->m_invMass; float32 invIB = massB * bodyB->m_invI; // Solve normal constraints for (int32 j = 0; j < c->pointCount; ++j) { b2TOISolverManifold psm; psm.Initialize(c, j); b2Vec2 normal = psm.normal; b2Vec2 point = psm.point; float32 separation = psm.separation; b2Vec2 rA = point - bodyA->m_sweep.c; b2Vec2 rB = point - bodyB->m_sweep.c; // Track max constraint error. minSeparation = b2Min(minSeparation, separation); // Prevent large corrections and allow slop. float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); // Compute the effective mass. float32 rnA = b2Cross(rA, normal); float32 rnB = b2Cross(rB, normal); float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB; // Compute normal impulse float32 impulse = K > 0.0f ? - C / K : 0.0f; b2Vec2 P = impulse * normal; bodyA->m_sweep.c -= invMassA * P; bodyA->m_sweep.a -= invIA * b2Cross(rA, P); bodyA->SynchronizeTransform(); bodyB->m_sweep.c += invMassB * P; bodyB->m_sweep.a += invIB * b2Cross(rB, P); bodyB->SynchronizeTransform(); } } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return minSeparation >= -1.5f * b2_linearSlop; }