/**************************************************************************** Copyright (c) 2015 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCPUParticle3DSphereCollider.h" #include "3dparticle/ParticleUniverse/CCPUParticleSystem3D.h" NS_CC_BEGIN // Constants const float PUParticle3DSphereCollider::DEFAULT_RADIUS = 100.0f; //----------------------------------------------------------------------- PUParticle3DSphereCollider::PUParticle3DSphereCollider(void) : PUParticle3DBaseCollider(), _predictedPosition(Vec3::ZERO), _radius(DEFAULT_RADIUS), _innerCollision(false) { } PUParticle3DSphereCollider::~PUParticle3DSphereCollider( void ) { } //----------------------------------------------------------------------- const float PUParticle3DSphereCollider::getRadius(void) const { return _radius; } //----------------------------------------------------------------------- void PUParticle3DSphereCollider::setRadius(const float radius) { _radius = radius; _sphere.setRadius(_radius); } //----------------------------------------------------------------------- bool PUParticle3DSphereCollider::isInnerCollision(void) const { return _innerCollision; } //----------------------------------------------------------------------- void PUParticle3DSphereCollider::setInnerCollision(bool innerCollision) { _innerCollision = innerCollision; } //----------------------------------------------------------------------- void PUParticle3DSphereCollider::calculateDirectionAfterCollision(PUParticle3D* particle, Vec3 distance, float distanceLength) { switch (_collisionType) { case PUParticle3DBaseCollider::CT_BOUNCE: { /** If the particle is on the surface (or just inside the sphere); bounce it Make use of formula R = 2 * (-I dot N) * N + I, where R = the new direction vector I = the old (unit) direction vector before the collision N = the Normal at the collision point */ float directionLength = particle->direction.length(); particle->direction.normalize(); distance.normalize(); particle->direction = 2 * (-particle->direction.dot(distance)) * distance + particle->direction; // Adjust to original speed particle->direction *= directionLength; // Accelerate/slow down, using the bounce value particle->direction *= _bouncyness; } break; case PUParticle3DBaseCollider::CT_FLOW: { /** Reset the position (on the sphere), but keep the direction. This doesn't really work good for box-type collisions, because it doesn't take the particle dimensions into account. */ float scaledRadius = 0.3333f * (_affectorScale.x + _affectorScale.y + _affectorScale.z) * _radius; particle->position = _derivedPosition + distance * (scaledRadius / distanceLength); } break; default: break; } } void PUParticle3DSphereCollider::updatePUAffector( PUParticle3D *particle, float deltaTime ) { //for (auto iter : _particleSystem->getParticles()) { //PUParticle3D *particle = iter; _predictedPosition = particle->position + _velocityScale * particle->direction; bool collision = false; Vec3 distance = particle->position - _derivedPosition; float distanceLength = distance.length(); float scaledRadius = 0.3333f * (_affectorScale.x + _affectorScale.y + _affectorScale.z) * _radius; // Scaling changed in V 1.3.1 switch(_intersectionType) { case PUParticle3DBaseCollider::IT_POINT: { // Validate for a point-sphere intersection if (_innerCollision == (distanceLength > scaledRadius)) { // Collision detected (re-position the particle) particle->position -= _velocityScale * particle->direction; collision = true; } else { distance = _predictedPosition - _derivedPosition; distanceLength = distance.length(); if (_innerCollision == (distanceLength > scaledRadius)) { // Collision detected collision = true; } } } break; case PUParticle3DBaseCollider::IT_BOX: { //// Validate for a box-sphere intersection //if (particle->particleType != Particle::PT_VISUAL) // break; AABB box; populateAlignedBox(box, particle->position, particle->width, particle->height, particle->depth); //FIXME //if (_innerCollision != box.intersects(_sphere)) //{ // // Collision detected (re-position the particle) // particle->position -= _velocityScale * particle->direction; // collision = true; //} //else //{ // AABB box; // populateAlignedBox(box, // _predictedPosition, // particle->width, // particle->height, // particle->depth); // if (_innerCollision != box.intersects(_sphere)) // { // // Collision detected // collision = true; // } //} } break; } if (collision) { calculateDirectionAfterCollision(particle, distance, distanceLength); calculateRotationSpeedAfterCollision(particle); particle->addEventFlags(PUParticle3D::PEF_COLLIDED); } } } void PUParticle3DSphereCollider::preUpdateAffector( float deltaTime ) { // Calculate the affectors' center position. _sphere.setCenter(getDerivedPosition()); } PUParticle3DSphereCollider* PUParticle3DSphereCollider::create() { auto psc = new (std::nothrow) PUParticle3DSphereCollider(); psc->autorelease(); return psc; } NS_CC_END