#===- cindex.py - Python Indexing Library Bindings -----------*- python -*--===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# r""" Clang Indexing Library Bindings =============================== This module provides an interface to the Clang indexing library. It is a low-level interface to the indexing library which attempts to match the Clang API directly while also being "pythonic". Notable differences from the C API are: * string results are returned as Python strings, not CXString objects. * null cursors are translated to None. * access to child cursors is done via iteration, not visitation. The major indexing objects are: Index The top-level object which manages some global library state. TranslationUnit High-level object encapsulating the AST for a single translation unit. These can be loaded from .ast files or parsed on the fly. Cursor Generic object for representing a node in the AST. SourceRange, SourceLocation, and File Objects representing information about the input source. Most object information is exposed using properties, when the underlying API call is efficient. """ # TODO # ==== # # o API support for invalid translation units. Currently we can't even get the # diagnostics on failure because they refer to locations in an object that # will have been invalidated. # # o fix memory management issues (currently client must hold on to index and # translation unit, or risk crashes). # # o expose code completion APIs. # # o cleanup ctypes wrapping, would be nice to separate the ctypes details more # clearly, and hide from the external interface (i.e., help(cindex)). # # o implement additional SourceLocation, SourceRange, and File methods. from ctypes import * import collections def get_cindex_library(): # FIXME: It's probably not the case that the library is actually found in # this location. We need a better system of identifying and loading the # CIndex library. It could be on path or elsewhere, or versioned, etc. import platform name = platform.system() if name == 'Darwin': return cdll.LoadLibrary('libclang.dylib') elif name == 'Windows': return cdll.LoadLibrary('libclang.dll') else: return cdll.LoadLibrary('libclang.so') # ctypes doesn't implicitly convert c_void_p to the appropriate wrapper # object. This is a problem, because it means that from_parameter will see an # integer and pass the wrong value on platforms where int != void*. Work around # this by marshalling object arguments as void**. c_object_p = POINTER(c_void_p) lib = get_cindex_library() ### Exception Classes ### class TranslationUnitLoadError(Exception): """Represents an error that occurred when loading a TranslationUnit. This is raised in the case where a TranslationUnit could not be instantiated due to failure in the libclang library. FIXME: Make libclang expose additional error information in this scenario. """ pass class TranslationUnitSaveError(Exception): """Represents an error that occurred when saving a TranslationUnit. Each error has associated with it an enumerated value, accessible under e.save_error. Consumers can compare the value with one of the ERROR_ constants in this class. """ # Indicates that an unknown error occurred. This typically indicates that # I/O failed during save. ERROR_UNKNOWN = 1 # Indicates that errors during translation prevented saving. The errors # should be available via the TranslationUnit's diagnostics. ERROR_TRANSLATION_ERRORS = 2 # Indicates that the translation unit was somehow invalid. ERROR_INVALID_TU = 3 def __init__(self, enumeration, message): assert isinstance(enumeration, int) if enumeration < 1 or enumeration > 3: raise Exception("Encountered undefined TranslationUnit save error " "constant: %d. Please file a bug to have this " "value supported." % enumeration) self.save_error = enumeration Exception.__init__(self, 'Error %d: %s' % (enumeration, message)) ### Structures and Utility Classes ### class _CXString(Structure): """Helper for transforming CXString results.""" _fields_ = [("spelling", c_char_p), ("free", c_int)] def __del__(self): _CXString_dispose(self) @staticmethod def from_result(res, fn, args): assert isinstance(res, _CXString) return _CXString_getCString(res) class SourceLocation(Structure): """ A SourceLocation represents a particular location within a source file. """ _fields_ = [("ptr_data", c_void_p * 2), ("int_data", c_uint)] _data = None def _get_instantiation(self): if self._data is None: f, l, c, o = c_object_p(), c_uint(), c_uint(), c_uint() SourceLocation_loc(self, byref(f), byref(l), byref(c), byref(o)) if f: f = File(f) else: f = None self._data = (f, int(l.value), int(c.value), int(o.value)) return self._data @staticmethod def from_position(tu, file, line, column): """ Retrieve the source location associated with a given file/line/column in a particular translation unit. """ return SourceLocation_getLocation(tu, file, line, column) @property def file(self): """Get the file represented by this source location.""" return self._get_instantiation()[0] @property def line(self): """Get the line represented by this source location.""" return self._get_instantiation()[1] @property def column(self): """Get the column represented by this source location.""" return self._get_instantiation()[2] @property def offset(self): """Get the file offset represented by this source location.""" return self._get_instantiation()[3] def __eq__(self, other): return SourceLocation_equalLocations(self, other) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): if self.file: filename = self.file.name else: filename = None return "" % ( filename, self.line, self.column) class SourceRange(Structure): """ A SourceRange describes a range of source locations within the source code. """ _fields_ = [ ("ptr_data", c_void_p * 2), ("begin_int_data", c_uint), ("end_int_data", c_uint)] # FIXME: Eliminate this and make normal constructor? Requires hiding ctypes # object. @staticmethod def from_locations(start, end): return SourceRange_getRange(start, end) @property def start(self): """ Return a SourceLocation representing the first character within a source range. """ return SourceRange_start(self) @property def end(self): """ Return a SourceLocation representing the last character within a source range. """ return SourceRange_end(self) def __eq__(self, other): return SourceRange_equalRanges(self, other) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "" % (self.start, self.end) class Diagnostic(object): """ A Diagnostic is a single instance of a Clang diagnostic. It includes the diagnostic severity, the message, the location the diagnostic occurred, as well as additional source ranges and associated fix-it hints. """ Ignored = 0 Note = 1 Warning = 2 Error = 3 Fatal = 4 def __init__(self, ptr): self.ptr = ptr def __del__(self): _clang_disposeDiagnostic(self) @property def severity(self): return _clang_getDiagnosticSeverity(self) @property def location(self): return _clang_getDiagnosticLocation(self) @property def spelling(self): return _clang_getDiagnosticSpelling(self) @property def ranges(self): class RangeIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(_clang_getDiagnosticNumRanges(self.diag)) def __getitem__(self, key): if (key >= len(self)): raise IndexError return _clang_getDiagnosticRange(self.diag, key) return RangeIterator(self) @property def fixits(self): class FixItIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(_clang_getDiagnosticNumFixIts(self.diag)) def __getitem__(self, key): range = SourceRange() value = _clang_getDiagnosticFixIt(self.diag, key, byref(range)) if len(value) == 0: raise IndexError return FixIt(range, value) return FixItIterator(self) @property def category_number(self): """The category number for this diagnostic.""" return _clang_getDiagnosticCategory(self) @property def category_name(self): """The string name of the category for this diagnostic.""" return _clang_getDiagnosticCategoryName(self.category_number) @property def option(self): """The command-line option that enables this diagnostic.""" return _clang_getDiagnosticOption(self, None) @property def disable_option(self): """The command-line option that disables this diagnostic.""" disable = _CXString() _clang_getDiagnosticOption(self, byref(disable)) return _CXString_getCString(disable) def __repr__(self): return "" % ( self.severity, self.location, self.spelling) def from_param(self): return self.ptr class FixIt(object): """ A FixIt represents a transformation to be applied to the source to "fix-it". The fix-it shouldbe applied by replacing the given source range with the given value. """ def __init__(self, range, value): self.range = range self.value = value def __repr__(self): return "" % (self.range, self.value) ### Access Specifier Kinds ### class AccessSpecifierKind(object): """ An AccessSpecifierKind describes the kind of access specifier a cursor points to. """ _kinds = [] _name_map = None def __init__(self, value): if value >= len(AccessSpecifierKind._kinds): AccessSpecifierKind._kinds += [None] * (value - len(AccessSpecifierKind._kinds) + 1) if AccessSpecifierKind._kinds[value] is not None: raise ValueError,'AccessSpecifierKind already loaded' self.value = value AccessSpecifierKind._kinds[value] = self AccessSpecifierKind._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this access specifier kind""" if self._name_map is None: self._name_map = {} for key,value in AccessSpecifierKind.__dict__.items(): if isinstance(value,AccessSpecifierKind): self._name_map[value] = key return self._name_map[self] @staticmethod def from_id(id): if id >= len(AccessSpecifierKind._kinds) or AccessSpecifierKind._kinds[id] is None: raise ValueError,'Unknown access specifier kind' return AccessSpecifierKind._kinds[id] @staticmethod def get_all_kinds(): """Return all AccessSpecifierKind enumeration instances.""" return filter(None, AccessSpecifierKind._kinds) def __repr__(self): return 'AccessSpecifierKind.%s' % (self.name,) ### # Declaration Kinds AccessSpecifierKind.INVALID = AccessSpecifierKind(0) AccessSpecifierKind.PUBLIC = AccessSpecifierKind(1) AccessSpecifierKind.PROTECTED = AccessSpecifierKind(2) AccessSpecifierKind.PRIVATE = AccessSpecifierKind(3) ### Cursor Kinds ### class CursorKind(object): """ A CursorKind describes the kind of entity that a cursor points to. """ # The unique kind objects, indexed by id. _kinds = [] _name_map = None def __init__(self, value): if value >= len(CursorKind._kinds): CursorKind._kinds += [None] * (value - len(CursorKind._kinds) + 1) if CursorKind._kinds[value] is not None: raise ValueError,'CursorKind already loaded' self.value = value CursorKind._kinds[value] = self CursorKind._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this cursor kind.""" if self._name_map is None: self._name_map = {} for key,value in CursorKind.__dict__.items(): if isinstance(value,CursorKind): self._name_map[value] = key return self._name_map[self] @staticmethod def from_id(id): if id >= len(CursorKind._kinds) or CursorKind._kinds[id] is None: raise ValueError,'Unknown cursor kind' return CursorKind._kinds[id] @staticmethod def get_all_kinds(): """Return all CursorKind enumeration instances.""" return filter(None, CursorKind._kinds) def is_declaration(self): """Test if this is a declaration kind.""" return CursorKind_is_decl(self) def is_reference(self): """Test if this is a reference kind.""" return CursorKind_is_ref(self) def is_expression(self): """Test if this is an expression kind.""" return CursorKind_is_expr(self) def is_statement(self): """Test if this is a statement kind.""" return CursorKind_is_stmt(self) def is_attribute(self): """Test if this is an attribute kind.""" return CursorKind_is_attribute(self) def is_invalid(self): """Test if this is an invalid kind.""" return CursorKind_is_inv(self) def is_translation_unit(self): """Test if this is a translation unit kind.""" return CursorKind_is_translation_unit(self) def is_preprocessing(self): """Test if this is a preprocessing kind.""" return CursorKind_is_preprocessing(self) def is_unexposed(self): """Test if this is an unexposed kind.""" return CursorKind_is_unexposed(self) def __repr__(self): return 'CursorKind.%s' % (self.name,) # FIXME: Is there a nicer way to expose this enumeration? We could potentially # represent the nested structure, or even build a class hierarchy. The main # things we want for sure are (a) simple external access to kinds, (b) a place # to hang a description and name, (c) easy to keep in sync with Index.h. ### # Declaration Kinds # A declaration whose specific kind is not exposed via this interface. # # Unexposed declarations have the same operations as any other kind of # declaration; one can extract their location information, spelling, find their # definitions, etc. However, the specific kind of the declaration is not # reported. CursorKind.UNEXPOSED_DECL = CursorKind(1) # A C or C++ struct. CursorKind.STRUCT_DECL = CursorKind(2) # A C or C++ union. CursorKind.UNION_DECL = CursorKind(3) # A C++ class. CursorKind.CLASS_DECL = CursorKind(4) # An enumeration. CursorKind.ENUM_DECL = CursorKind(5) # A field (in C) or non-static data member (in C++) in a struct, union, or C++ # class. CursorKind.FIELD_DECL = CursorKind(6) # An enumerator constant. CursorKind.ENUM_CONSTANT_DECL = CursorKind(7) # A function. CursorKind.FUNCTION_DECL = CursorKind(8) # A variable. CursorKind.VAR_DECL = CursorKind(9) # A function or method parameter. CursorKind.PARM_DECL = CursorKind(10) # An Objective-C @interface. CursorKind.OBJC_INTERFACE_DECL = CursorKind(11) # An Objective-C @interface for a category. CursorKind.OBJC_CATEGORY_DECL = CursorKind(12) # An Objective-C @protocol declaration. CursorKind.OBJC_PROTOCOL_DECL = CursorKind(13) # An Objective-C @property declaration. CursorKind.OBJC_PROPERTY_DECL = CursorKind(14) # An Objective-C instance variable. CursorKind.OBJC_IVAR_DECL = CursorKind(15) # An Objective-C instance method. CursorKind.OBJC_INSTANCE_METHOD_DECL = CursorKind(16) # An Objective-C class method. CursorKind.OBJC_CLASS_METHOD_DECL = CursorKind(17) # An Objective-C @implementation. CursorKind.OBJC_IMPLEMENTATION_DECL = CursorKind(18) # An Objective-C @implementation for a category. CursorKind.OBJC_CATEGORY_IMPL_DECL = CursorKind(19) # A typedef. CursorKind.TYPEDEF_DECL = CursorKind(20) # A C++ class method. CursorKind.CXX_METHOD = CursorKind(21) # A C++ namespace. CursorKind.NAMESPACE = CursorKind(22) # A linkage specification, e.g. 'extern "C"'. CursorKind.LINKAGE_SPEC = CursorKind(23) # A C++ constructor. CursorKind.CONSTRUCTOR = CursorKind(24) # A C++ destructor. CursorKind.DESTRUCTOR = CursorKind(25) # A C++ conversion function. CursorKind.CONVERSION_FUNCTION = CursorKind(26) # A C++ template type parameter CursorKind.TEMPLATE_TYPE_PARAMETER = CursorKind(27) # A C++ non-type template paramater. CursorKind.TEMPLATE_NON_TYPE_PARAMETER = CursorKind(28) # A C++ template template parameter. CursorKind.TEMPLATE_TEMPLATE_PARAMTER = CursorKind(29) # A C++ function template. CursorKind.FUNCTION_TEMPLATE = CursorKind(30) # A C++ class template. CursorKind.CLASS_TEMPLATE = CursorKind(31) # A C++ class template partial specialization. CursorKind.CLASS_TEMPLATE_PARTIAL_SPECIALIZATION = CursorKind(32) # A C++ namespace alias declaration. CursorKind.NAMESPACE_ALIAS = CursorKind(33) # A C++ using directive CursorKind.USING_DIRECTIVE = CursorKind(34) # A C++ using declaration CursorKind.USING_DECLARATION = CursorKind(35) # A Type alias decl. CursorKind.TYPE_ALIAS_DECL = CursorKind(36) # A Objective-C synthesize decl CursorKind.OBJC_SYNTHESIZE_DECL = CursorKind(37) # A Objective-C dynamic decl CursorKind.OBJC_DYNAMIC_DECL = CursorKind(38) # A C++ access specifier decl. CursorKind.CXX_ACCESS_SPEC_DECL = CursorKind(39) ### # Reference Kinds CursorKind.OBJC_SUPER_CLASS_REF = CursorKind(40) CursorKind.OBJC_PROTOCOL_REF = CursorKind(41) CursorKind.OBJC_CLASS_REF = CursorKind(42) # A reference to a type declaration. # # A type reference occurs anywhere where a type is named but not # declared. For example, given: # typedef unsigned size_type; # size_type size; # # The typedef is a declaration of size_type (CXCursor_TypedefDecl), # while the type of the variable "size" is referenced. The cursor # referenced by the type of size is the typedef for size_type. CursorKind.TYPE_REF = CursorKind(43) CursorKind.CXX_BASE_SPECIFIER = CursorKind(44) # A reference to a class template, function template, template # template parameter, or class template partial specialization. CursorKind.TEMPLATE_REF = CursorKind(45) # A reference to a namespace or namepsace alias. CursorKind.NAMESPACE_REF = CursorKind(46) # A reference to a member of a struct, union, or class that occurs in # some non-expression context, e.g., a designated initializer. CursorKind.MEMBER_REF = CursorKind(47) # A reference to a labeled statement. CursorKind.LABEL_REF = CursorKind(48) # A reference toa a set of overloaded functions or function templates # that has not yet been resolved to a specific function or function template. CursorKind.OVERLOADED_DECL_REF = CursorKind(49) ### # Invalid/Error Kinds CursorKind.INVALID_FILE = CursorKind(70) CursorKind.NO_DECL_FOUND = CursorKind(71) CursorKind.NOT_IMPLEMENTED = CursorKind(72) CursorKind.INVALID_CODE = CursorKind(73) ### # Expression Kinds # An expression whose specific kind is not exposed via this interface. # # Unexposed expressions have the same operations as any other kind of # expression; one can extract their location information, spelling, children, # etc. However, the specific kind of the expression is not reported. CursorKind.UNEXPOSED_EXPR = CursorKind(100) # An expression that refers to some value declaration, such as a function, # varible, or enumerator. CursorKind.DECL_REF_EXPR = CursorKind(101) # An expression that refers to a member of a struct, union, class, Objective-C # class, etc. CursorKind.MEMBER_REF_EXPR = CursorKind(102) # An expression that calls a function. CursorKind.CALL_EXPR = CursorKind(103) # An expression that sends a message to an Objective-C object or class. CursorKind.OBJC_MESSAGE_EXPR = CursorKind(104) # An expression that represents a block literal. CursorKind.BLOCK_EXPR = CursorKind(105) # An integer literal. CursorKind.INTEGER_LITERAL = CursorKind(106) # A floating point number literal. CursorKind.FLOATING_LITERAL = CursorKind(107) # An imaginary number literal. CursorKind.IMAGINARY_LITERAL = CursorKind(108) # A string literal. CursorKind.STRING_LITERAL = CursorKind(109) # A character literal. CursorKind.CHARACTER_LITERAL = CursorKind(110) # A parenthesized expression, e.g. "(1)". # # This AST node is only formed if full location information is requested. CursorKind.PAREN_EXPR = CursorKind(111) # This represents the unary-expression's (except sizeof and # alignof). CursorKind.UNARY_OPERATOR = CursorKind(112) # [C99 6.5.2.1] Array Subscripting. CursorKind.ARRAY_SUBSCRIPT_EXPR = CursorKind(113) # A builtin binary operation expression such as "x + y" or # "x <= y". CursorKind.BINARY_OPERATOR = CursorKind(114) # Compound assignment such as "+=". CursorKind.COMPOUND_ASSIGNMENT_OPERATOR = CursorKind(115) # The ?: ternary operator. CursorKind.CONDITONAL_OPERATOR = CursorKind(116) # An explicit cast in C (C99 6.5.4) or a C-style cast in C++ # (C++ [expr.cast]), which uses the syntax (Type)expr. # # For example: (int)f. CursorKind.CSTYLE_CAST_EXPR = CursorKind(117) # [C99 6.5.2.5] CursorKind.COMPOUND_LITERAL_EXPR = CursorKind(118) # Describes an C or C++ initializer list. CursorKind.INIT_LIST_EXPR = CursorKind(119) # The GNU address of label extension, representing &&label. CursorKind.ADDR_LABEL_EXPR = CursorKind(120) # This is the GNU Statement Expression extension: ({int X=4; X;}) CursorKind.StmtExpr = CursorKind(121) # Represents a C11 generic selection. CursorKind.GENERIC_SELECTION_EXPR = CursorKind(122) # Implements the GNU __null extension, which is a name for a null # pointer constant that has integral type (e.g., int or long) and is the same # size and alignment as a pointer. # # The __null extension is typically only used by system headers, which define # NULL as __null in C++ rather than using 0 (which is an integer that may not # match the size of a pointer). CursorKind.GNU_NULL_EXPR = CursorKind(123) # C++'s static_cast<> expression. CursorKind.CXX_STATIC_CAST_EXPR = CursorKind(124) # C++'s dynamic_cast<> expression. CursorKind.CXX_DYNAMIC_CAST_EXPR = CursorKind(125) # C++'s reinterpret_cast<> expression. CursorKind.CXX_REINTERPRET_CAST_EXPR = CursorKind(126) # C++'s const_cast<> expression. CursorKind.CXX_CONST_CAST_EXPR = CursorKind(127) # Represents an explicit C++ type conversion that uses "functional" # notion (C++ [expr.type.conv]). # # Example: # \code # x = int(0.5); # \endcode CursorKind.CXX_FUNCTIONAL_CAST_EXPR = CursorKind(128) # A C++ typeid expression (C++ [expr.typeid]). CursorKind.CXX_TYPEID_EXPR = CursorKind(129) # [C++ 2.13.5] C++ Boolean Literal. CursorKind.CXX_BOOL_LITERAL_EXPR = CursorKind(130) # [C++0x 2.14.7] C++ Pointer Literal. CursorKind.CXX_NULL_PTR_LITERAL_EXPR = CursorKind(131) # Represents the "this" expression in C++ CursorKind.CXX_THIS_EXPR = CursorKind(132) # [C++ 15] C++ Throw Expression. # # This handles 'throw' and 'throw' assignment-expression. When # assignment-expression isn't present, Op will be null. CursorKind.CXX_THROW_EXPR = CursorKind(133) # A new expression for memory allocation and constructor calls, e.g: # "new CXXNewExpr(foo)". CursorKind.CXX_NEW_EXPR = CursorKind(134) # A delete expression for memory deallocation and destructor calls, # e.g. "delete[] pArray". CursorKind.CXX_DELETE_EXPR = CursorKind(135) # Represents a unary expression. CursorKind.CXX_UNARY_EXPR = CursorKind(136) # ObjCStringLiteral, used for Objective-C string literals i.e. "foo". CursorKind.OBJC_STRING_LITERAL = CursorKind(137) # ObjCEncodeExpr, used for in Objective-C. CursorKind.OBJC_ENCODE_EXPR = CursorKind(138) # ObjCSelectorExpr used for in Objective-C. CursorKind.OBJC_SELECTOR_EXPR = CursorKind(139) # Objective-C's protocol expression. CursorKind.OBJC_PROTOCOL_EXPR = CursorKind(140) # An Objective-C "bridged" cast expression, which casts between # Objective-C pointers and C pointers, transferring ownership in the process. # # \code # NSString *str = (__bridge_transfer NSString *)CFCreateString(); # \endcode CursorKind.OBJC_BRIDGE_CAST_EXPR = CursorKind(141) # Represents a C++0x pack expansion that produces a sequence of # expressions. # # A pack expansion expression contains a pattern (which itself is an # expression) followed by an ellipsis. For example: CursorKind.PACK_EXPANSION_EXPR = CursorKind(142) # Represents an expression that computes the length of a parameter # pack. CursorKind.SIZE_OF_PACK_EXPR = CursorKind(143) # A statement whose specific kind is not exposed via this interface. # # Unexposed statements have the same operations as any other kind of statement; # one can extract their location information, spelling, children, etc. However, # the specific kind of the statement is not reported. CursorKind.UNEXPOSED_STMT = CursorKind(200) # A labelled statement in a function. CursorKind.LABEL_STMT = CursorKind(201) # A compound statement CursorKind.COMPOUND_STMT = CursorKind(202) # A case statement. CursorKind.CASE_STMT = CursorKind(203) # A default statement. CursorKind.DEFAULT_STMT = CursorKind(204) # An if statement. CursorKind.IF_STMT = CursorKind(205) # A switch statement. CursorKind.SWITCH_STMT = CursorKind(206) # A while statement. CursorKind.WHILE_STMT = CursorKind(207) # A do statement. CursorKind.DO_STMT = CursorKind(208) # A for statement. CursorKind.FOR_STMT = CursorKind(209) # A goto statement. CursorKind.GOTO_STMT = CursorKind(210) # An indirect goto statement. CursorKind.INDIRECT_GOTO_STMT = CursorKind(211) # A continue statement. CursorKind.CONTINUE_STMT = CursorKind(212) # A break statement. CursorKind.BREAK_STMT = CursorKind(213) # A return statement. CursorKind.RETURN_STMT = CursorKind(214) # A GNU-style inline assembler statement. CursorKind.ASM_STMT = CursorKind(215) # Objective-C's overall @try-@catch-@finally statement. CursorKind.OBJC_AT_TRY_STMT = CursorKind(216) # Objective-C's @catch statement. CursorKind.OBJC_AT_CATCH_STMT = CursorKind(217) # Objective-C's @finally statement. CursorKind.OBJC_AT_FINALLY_STMT = CursorKind(218) # Objective-C's @throw statement. CursorKind.OBJC_AT_THROW_STMT = CursorKind(219) # Objective-C's @synchronized statement. CursorKind.OBJC_AT_SYNCHRONIZED_STMT = CursorKind(220) # Objective-C's autorealease pool statement. CursorKind.OBJC_AUTORELEASE_POOL_STMT = CursorKind(221) # Objective-C's for collection statement. CursorKind.OBJC_FOR_COLLECTION_STMT = CursorKind(222) # C++'s catch statement. CursorKind.CXX_CATCH_STMT = CursorKind(223) # C++'s try statement. CursorKind.CXX_TRY_STMT = CursorKind(224) # C++'s for (* : *) statement. CursorKind.CXX_FOR_RANGE_STMT = CursorKind(225) # Windows Structured Exception Handling's try statement. CursorKind.SEH_TRY_STMT = CursorKind(226) # Windows Structured Exception Handling's except statement. CursorKind.SEH_EXCEPT_STMT = CursorKind(227) # Windows Structured Exception Handling's finally statement. CursorKind.SEH_FINALLY_STMT = CursorKind(228) # The null statement. CursorKind.NULL_STMT = CursorKind(230) # Adaptor class for mixing declarations with statements and expressions. CursorKind.DECL_STMT = CursorKind(231) ### # Other Kinds # Cursor that represents the translation unit itself. # # The translation unit cursor exists primarily to act as the root cursor for # traversing the contents of a translation unit. CursorKind.TRANSLATION_UNIT = CursorKind(300) ### # Attributes # An attribute whoe specific kind is note exposed via this interface CursorKind.UNEXPOSED_ATTR = CursorKind(400) CursorKind.IB_ACTION_ATTR = CursorKind(401) CursorKind.IB_OUTLET_ATTR = CursorKind(402) CursorKind.IB_OUTLET_COLLECTION_ATTR = CursorKind(403) CursorKind.CXX_FINAL_ATTR = CursorKind(404) CursorKind.CXX_OVERRIDE_ATTR = CursorKind(405) CursorKind.ANNOTATE_ATTR = CursorKind(406) CursorKind.ASM_LABEL_ATTR = CursorKind(407) ### # Preprocessing CursorKind.PREPROCESSING_DIRECTIVE = CursorKind(500) CursorKind.MACRO_DEFINITION = CursorKind(501) CursorKind.MACRO_INSTANTIATION = CursorKind(502) CursorKind.INCLUSION_DIRECTIVE = CursorKind(503) ### Cursors ### class Cursor(Structure): """ The Cursor class represents a reference to an element within the AST. It acts as a kind of iterator. """ _fields_ = [("_kind_id", c_int), ("xdata", c_int), ("data", c_void_p * 3)] @staticmethod def from_location(tu, location): # We store a reference to the TU in the instance so the TU won't get # collected before the cursor. cursor = Cursor_get(tu, location) cursor._tu = tu return cursor def __eq__(self, other): return Cursor_eq(self, other) def __ne__(self, other): return not self.__eq__(other) def is_definition(self): """ Returns true if the declaration pointed at by the cursor is also a definition of that entity. """ return Cursor_is_def(self) def get_definition(self): """ If the cursor is a reference to a declaration or a declaration of some entity, return a cursor that points to the definition of that entity. """ # TODO: Should probably check that this is either a reference or # declaration prior to issuing the lookup. return Cursor_def(self) def get_usr(self): """Return the Unified Symbol Resultion (USR) for the entity referenced by the given cursor (or None). A Unified Symbol Resolution (USR) is a string that identifies a particular entity (function, class, variable, etc.) within a program. USRs can be compared across translation units to determine, e.g., when references in one translation refer to an entity defined in another translation unit.""" return Cursor_usr(self) @property def kind(self): """Return the kind of this cursor.""" return CursorKind.from_id(self._kind_id) @property def spelling(self): """Return the spelling of the entity pointed at by the cursor.""" if not self.kind.is_declaration(): # FIXME: clang_getCursorSpelling should be fixed to not assert on # this, for consistency with clang_getCursorUSR. return None if not hasattr(self, '_spelling'): self._spelling = Cursor_spelling(self) return self._spelling @property def displayname(self): """ Return the display name for the entity referenced by this cursor. The display name contains extra information that helps identify the cursor, such as the parameters of a function or template or the arguments of a class template specialization. """ if not hasattr(self, '_displayname'): self._displayname = Cursor_displayname(self) return self._displayname @property def location(self): """ Return the source location (the starting character) of the entity pointed at by the cursor. """ if not hasattr(self, '_loc'): self._loc = Cursor_loc(self) return self._loc @property def extent(self): """ Return the source range (the range of text) occupied by the entity pointed at by the cursor. """ if not hasattr(self, '_extent'): self._extent = Cursor_extent(self) return self._extent @property def type(self): """ Retrieve the Type (if any) of the entity pointed at by the cursor. """ if not hasattr(self, '_type'): self._type = Cursor_type(self) return self._type @property def canonical(self): """Return the canonical Cursor corresponding to this Cursor. The canonical cursor is the cursor which is representative for the underlying entity. For example, if you have multiple forward declarations for the same class, the canonical cursor for the forward declarations will be identical. """ if not hasattr(self, '_canonical'): self._canonical = Cursor_canonical(self) return self._canonical @property def result_type(self): """Retrieve the Type of the result for this Cursor.""" if not hasattr(self, '_result_type'): self._result_type = Type_get_result(self.type) return self._result_type @property def underlying_typedef_type(self): """Return the underlying type of a typedef declaration. Returns a Type for the typedef this cursor is a declaration for. If the current cursor is not a typedef, this raises. """ if not hasattr(self, '_underlying_type'): assert self.kind.is_declaration() self._underlying_type = Cursor_underlying_type(self) return self._underlying_type @property def enum_type(self): """Return the integer type of an enum declaration. Returns a Type corresponding to an integer. If the cursor is not for an enum, this raises. """ if not hasattr(self, '_enum_type'): assert self.kind == CursorKind.ENUM_DECL self._enum_type = Cursor_enum_type(self) return self._enum_type @property def enum_value(self): """Return the value of an enum constant.""" if not hasattr(self, '_enum_value'): assert self.kind == CursorKind.ENUM_CONSTANT_DECL # Figure out the underlying type of the enum to know if it # is a signed or unsigned quantity. underlying_type = self.type if underlying_type.kind == TypeKind.ENUM: underlying_type = underlying_type.get_declaration().enum_type if underlying_type.kind in (TypeKind.CHAR_U, TypeKind.UCHAR, TypeKind.CHAR16, TypeKind.CHAR32, TypeKind.USHORT, TypeKind.UINT, TypeKind.ULONG, TypeKind.ULONGLONG, TypeKind.UINT128): self._enum_value = Cursor_enum_const_decl_unsigned(self) else: self._enum_value = Cursor_enum_const_decl(self) return self._enum_value @property def objc_type_encoding(self): """Return the Objective-C type encoding as a str.""" if not hasattr(self, '_objc_type_encoding'): self._objc_type_encoding = Cursor_objc_type_encoding(self) return self._objc_type_encoding @property def hash(self): """Returns a hash of the cursor as an int.""" if not hasattr(self, '_hash'): self._hash = Cursor_hash(self) return self._hash @property def semantic_parent(self): """Return the semantic parent for this cursor.""" if not hasattr(self, '_semantic_parent'): self._semantic_parent = Cursor_semantic_parent(self) return self._semantic_parent @property def lexical_parent(self): """Return the lexical parent for this cursor.""" if not hasattr(self, '_lexical_parent'): self._lexical_parent = Cursor_lexical_parent(self) return self._lexical_parent @property def translation_unit(self): """Returns the TranslationUnit to which this Cursor belongs.""" # If this triggers an AttributeError, the instance was not properly # created. return self._tu def get_children(self): """Return an iterator for accessing the children of this cursor.""" # FIXME: Expose iteration from CIndex, PR6125. def visitor(child, parent, children): # FIXME: Document this assertion in API. # FIXME: There should just be an isNull method. assert child != Cursor_null() # Create reference to TU so it isn't GC'd before Cursor. child._tu = self._tu children.append(child) return 1 # continue children = [] Cursor_visit(self, Cursor_visit_callback(visitor), children) return iter(children) def get_children_array(self): """Return an iterator for accessing the children of this cursor.""" # FIXME: Expose iteration from CIndex, PR6125. def visitor(child, parent, children): # FIXME: Document this assertion in API. # FIXME: There should just be an isNull method. assert child != Cursor_null() # Create reference to TU so it isn't GC'd before Cursor. child._tu = self._tu children.append(child) return 1 # continue children = [] Cursor_visit(self, Cursor_visit_callback(visitor), children) return children def is_method_static(self): assert self.kind == CursorKind.CXX_METHOD return Cursor_CXXMethod_isStatic(self) def get_access_specifier(self): assert self.kind == CursorKind.CXX_ACCESS_SPEC_DECL return Cursor_getCXXAccessSpecifier(self) @staticmethod def from_result(res, fn, args): assert isinstance(res, Cursor) # FIXME: There should just be an isNull method. if res == Cursor_null(): return None # Store a reference to the TU in the Python object so it won't get GC'd # before the Cursor. tu = None for arg in args: if isinstance(arg, TranslationUnit): tu = arg break if hasattr(arg, 'translation_unit'): tu = arg.translation_unit break assert tu is not None res._tu = tu return res ### Type Kinds ### class TypeKind(object): """ Describes the kind of type. """ # The unique kind objects, indexed by id. _kinds = [] _name_map = None def __init__(self, value): if value >= len(TypeKind._kinds): TypeKind._kinds += [None] * (value - len(TypeKind._kinds) + 1) if TypeKind._kinds[value] is not None: raise ValueError,'TypeKind already loaded' self.value = value TypeKind._kinds[value] = self TypeKind._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this cursor kind.""" if self._name_map is None: self._name_map = {} for key,value in TypeKind.__dict__.items(): if isinstance(value,TypeKind): self._name_map[value] = key return self._name_map[self] @property def spelling(self): """Retrieve the spelling of this TypeKind.""" return TypeKind_spelling(self.value) @staticmethod def from_id(id): if id >= len(TypeKind._kinds) or TypeKind._kinds[id] is None: raise ValueError,'Unknown type kind %d' % id return TypeKind._kinds[id] def __repr__(self): return 'TypeKind.%s' % (self.name,) TypeKind_spelling = lib.clang_getTypeKindSpelling TypeKind_spelling.argtypes = [c_uint] TypeKind_spelling.restype = _CXString TypeKind_spelling.errcheck = _CXString.from_result TypeKind.INVALID = TypeKind(0) TypeKind.UNEXPOSED = TypeKind(1) TypeKind.VOID = TypeKind(2) TypeKind.BOOL = TypeKind(3) TypeKind.CHAR_U = TypeKind(4) TypeKind.UCHAR = TypeKind(5) TypeKind.CHAR16 = TypeKind(6) TypeKind.CHAR32 = TypeKind(7) TypeKind.USHORT = TypeKind(8) TypeKind.UINT = TypeKind(9) TypeKind.ULONG = TypeKind(10) TypeKind.ULONGLONG = TypeKind(11) TypeKind.UINT128 = TypeKind(12) TypeKind.CHAR_S = TypeKind(13) TypeKind.SCHAR = TypeKind(14) TypeKind.WCHAR = TypeKind(15) TypeKind.SHORT = TypeKind(16) TypeKind.INT = TypeKind(17) TypeKind.LONG = TypeKind(18) TypeKind.LONGLONG = TypeKind(19) TypeKind.INT128 = TypeKind(20) TypeKind.FLOAT = TypeKind(21) TypeKind.DOUBLE = TypeKind(22) TypeKind.LONGDOUBLE = TypeKind(23) TypeKind.NULLPTR = TypeKind(24) TypeKind.OVERLOAD = TypeKind(25) TypeKind.DEPENDENT = TypeKind(26) TypeKind.OBJCID = TypeKind(27) TypeKind.OBJCCLASS = TypeKind(28) TypeKind.OBJCSEL = TypeKind(29) TypeKind.COMPLEX = TypeKind(100) TypeKind.POINTER = TypeKind(101) TypeKind.BLOCKPOINTER = TypeKind(102) TypeKind.LVALUEREFERENCE = TypeKind(103) TypeKind.RVALUEREFERENCE = TypeKind(104) TypeKind.RECORD = TypeKind(105) TypeKind.ENUM = TypeKind(106) TypeKind.TYPEDEF = TypeKind(107) TypeKind.OBJCINTERFACE = TypeKind(108) TypeKind.OBJCOBJECTPOINTER = TypeKind(109) TypeKind.FUNCTIONNOPROTO = TypeKind(110) TypeKind.FUNCTIONPROTO = TypeKind(111) TypeKind.CONSTANTARRAY = TypeKind(112) TypeKind.VECTOR = TypeKind(113) class Type(Structure): """ The type of an element in the abstract syntax tree. """ _fields_ = [("_kind_id", c_int), ("data", c_void_p * 2)] @property def kind(self): """Return the kind of this type.""" return TypeKind.from_id(self._kind_id) def argument_types(self): """Retrieve a container for the non-variadic arguments for this type. The returned object is iterable and indexable. Each item in the container is a Type instance. """ class ArgumentsIterator(collections.Sequence): def __init__(self, parent): self.parent = parent self.length = None def __len__(self): if self.length is None: self.length = Type_get_num_arg_types(self.parent) return self.length def __getitem__(self, key): # FIXME Support slice objects. if not isinstance(key, int): raise TypeError("Must supply a non-negative int.") if key < 0: raise IndexError("Only non-negative indexes are accepted.") if key >= len(self): raise IndexError("Index greater than container length: " "%d > %d" % ( key, len(self) )) result = Type_get_arg_type(self.parent, key) if result.kind == TypeKind.INVALID: raise IndexError("Argument could not be retrieved.") return result assert self.kind == TypeKind.FUNCTIONPROTO return ArgumentsIterator(self) @property def element_type(self): """Retrieve the Type of elements within this Type. If accessed on a type that is not an array, complex, or vector type, an exception will be raised. """ result = Type_get_element_type(self) if result.kind == TypeKind.INVALID: raise Exception('Element type not available on this type.') return result @property def element_count(self): """Retrieve the number of elements in this type. Returns an int. If the Type is not an array or vector, this raises. """ result = Type_get_num_elements(self) if result < 0: raise Exception('Type does not have elements.') return result @property def translation_unit(self): """The TranslationUnit to which this Type is associated.""" # If this triggers an AttributeError, the instance was not properly # instantiated. return self._tu @staticmethod def from_result(res, fn, args): assert isinstance(res, Type) tu = None for arg in args: if hasattr(arg, 'translation_unit'): tu = arg.translation_unit break assert tu is not None res._tu = tu return res def get_canonical(self): """ Return the canonical type for a Type. Clang's type system explicitly models typedefs and all the ways a specific type can be represented. The canonical type is the underlying type with all the "sugar" removed. For example, if 'T' is a typedef for 'int', the canonical type for 'T' would be 'int'. """ return Type_get_canonical(self) def is_const_qualified(self): """Determine whether a Type has the "const" qualifier set. This does not look through typedefs that may have added "const" at a different level. """ return Type_is_const_qualified(self) def is_volatile_qualified(self): """Determine whether a Type has the "volatile" qualifier set. This does not look through typedefs that may have added "volatile" at a different level. """ return Type_is_volatile_qualified(self) def is_restrict_qualified(self): """Determine whether a Type has the "restrict" qualifier set. This does not look through typedefs that may have added "restrict" at a different level. """ return Type_is_restrict_qualified(self) def is_function_variadic(self): """Determine whether this function Type is a variadic function type.""" assert self.kind == TypeKind.FUNCTIONPROTO return Type_is_variadic(self) def is_pod(self): """Determine whether this Type represents plain old data (POD).""" return Type_is_pod(self) def get_pointee(self): """ For pointer types, returns the type of the pointee. """ return Type_get_pointee(self) def get_declaration(self): """ Return the cursor for the declaration of the given type. """ return Type_get_declaration(self) def get_result(self): """ Retrieve the result type associated with a function type. """ return Type_get_result(self) def get_array_element_type(self): """ Retrieve the type of the elements of the array type. """ return Type_get_array_element(self) def get_array_size(self): """ Retrieve the size of the constant array. """ return Type_get_array_size(self) def __eq__(self, other): if type(other) != type(self): return False return Type_equal(self, other) def __ne__(self, other): return not self.__eq__(other) ## CIndex Objects ## # CIndex objects (derived from ClangObject) are essentially lightweight # wrappers attached to some underlying object, which is exposed via CIndex as # a void*. class ClangObject(object): """ A helper for Clang objects. This class helps act as an intermediary for the ctypes library and the Clang CIndex library. """ def __init__(self, obj): assert isinstance(obj, c_object_p) and obj self.obj = self._as_parameter_ = obj def from_param(self): return self._as_parameter_ class _CXUnsavedFile(Structure): """Helper for passing unsaved file arguments.""" _fields_ = [("name", c_char_p), ("contents", c_char_p), ('length', c_ulong)] ## Diagnostic Conversion ## _clang_getNumDiagnostics = lib.clang_getNumDiagnostics _clang_getNumDiagnostics.argtypes = [c_object_p] _clang_getNumDiagnostics.restype = c_uint _clang_getDiagnostic = lib.clang_getDiagnostic _clang_getDiagnostic.argtypes = [c_object_p, c_uint] _clang_getDiagnostic.restype = c_object_p _clang_disposeDiagnostic = lib.clang_disposeDiagnostic _clang_disposeDiagnostic.argtypes = [Diagnostic] _clang_getDiagnosticSeverity = lib.clang_getDiagnosticSeverity _clang_getDiagnosticSeverity.argtypes = [Diagnostic] _clang_getDiagnosticSeverity.restype = c_int _clang_getDiagnosticLocation = lib.clang_getDiagnosticLocation _clang_getDiagnosticLocation.argtypes = [Diagnostic] _clang_getDiagnosticLocation.restype = SourceLocation _clang_getDiagnosticSpelling = lib.clang_getDiagnosticSpelling _clang_getDiagnosticSpelling.argtypes = [Diagnostic] _clang_getDiagnosticSpelling.restype = _CXString _clang_getDiagnosticSpelling.errcheck = _CXString.from_result _clang_getDiagnosticNumRanges = lib.clang_getDiagnosticNumRanges _clang_getDiagnosticNumRanges.argtypes = [Diagnostic] _clang_getDiagnosticNumRanges.restype = c_uint _clang_getDiagnosticRange = lib.clang_getDiagnosticRange _clang_getDiagnosticRange.argtypes = [Diagnostic, c_uint] _clang_getDiagnosticRange.restype = SourceRange _clang_getDiagnosticNumFixIts = lib.clang_getDiagnosticNumFixIts _clang_getDiagnosticNumFixIts.argtypes = [Diagnostic] _clang_getDiagnosticNumFixIts.restype = c_uint _clang_getDiagnosticFixIt = lib.clang_getDiagnosticFixIt _clang_getDiagnosticFixIt.argtypes = [Diagnostic, c_uint, POINTER(SourceRange)] _clang_getDiagnosticFixIt.restype = _CXString _clang_getDiagnosticFixIt.errcheck = _CXString.from_result _clang_getDiagnosticCategory = lib.clang_getDiagnosticCategory _clang_getDiagnosticCategory.argtypes = [Diagnostic] _clang_getDiagnosticCategory.restype = c_uint _clang_getDiagnosticCategoryName = lib.clang_getDiagnosticCategoryName _clang_getDiagnosticCategoryName.argtypes = [c_uint] _clang_getDiagnosticCategoryName.restype = _CXString _clang_getDiagnosticCategoryName.errcheck = _CXString.from_result _clang_getDiagnosticOption = lib.clang_getDiagnosticOption _clang_getDiagnosticOption.argtypes = [Diagnostic, POINTER(_CXString)] _clang_getDiagnosticOption.restype = _CXString _clang_getDiagnosticOption.errcheck = _CXString.from_result ### class CompletionChunk: class Kind: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __init__(self, completionString, key): self.cs = completionString self.key = key def __repr__(self): return "{'" + self.spelling + "', " + str(self.kind) + "}" @property def spelling(self): return _clang_getCompletionChunkText(self.cs, self.key).spelling @property def kind(self): res = _clang_getCompletionChunkKind(self.cs, self.key) return completionChunkKindMap[res] @property def string(self): res = _clang_getCompletionChunkCompletionString(self.cs, self.key) if (res): return CompletionString(res) else: None def isKindOptional(self): return self.kind == completionChunkKindMap[0] def isKindTypedText(self): return self.kind == completionChunkKindMap[1] def isKindPlaceHolder(self): return self.kind == completionChunkKindMap[3] def isKindInformative(self): return self.kind == completionChunkKindMap[4] def isKindResultType(self): return self.kind == completionChunkKindMap[15] completionChunkKindMap = { 0: CompletionChunk.Kind("Optional"), 1: CompletionChunk.Kind("TypedText"), 2: CompletionChunk.Kind("Text"), 3: CompletionChunk.Kind("Placeholder"), 4: CompletionChunk.Kind("Informative"), 5: CompletionChunk.Kind("CurrentParameter"), 6: CompletionChunk.Kind("LeftParen"), 7: CompletionChunk.Kind("RightParen"), 8: CompletionChunk.Kind("LeftBracket"), 9: CompletionChunk.Kind("RightBracket"), 10: CompletionChunk.Kind("LeftBrace"), 11: CompletionChunk.Kind("RightBrace"), 12: CompletionChunk.Kind("LeftAngle"), 13: CompletionChunk.Kind("RightAngle"), 14: CompletionChunk.Kind("Comma"), 15: CompletionChunk.Kind("ResultType"), 16: CompletionChunk.Kind("Colon"), 17: CompletionChunk.Kind("SemiColon"), 18: CompletionChunk.Kind("Equal"), 19: CompletionChunk.Kind("HorizontalSpace"), 20: CompletionChunk.Kind("VerticalSpace")} class CompletionString(ClangObject): class Availability: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __len__(self): return _clang_getNumCompletionChunks(self.obj) def __getitem__(self, key): if len(self) <= key: raise IndexError return CompletionChunk(self.obj, key) @property def priority(self): return _clang_getCompletionPriority(self.obj) @property def availability(self): res = _clang_getCompletionAvailability(self.obj) return availabilityKinds[res] def __repr__(self): return " | ".join([str(a) for a in self]) \ + " || Priority: " + str(self.priority) \ + " || Availability: " + str(self.availability) availabilityKinds = { 0: CompletionChunk.Kind("Available"), 1: CompletionChunk.Kind("Deprecated"), 2: CompletionChunk.Kind("NotAvailable")} class CodeCompletionResult(Structure): _fields_ = [('cursorKind', c_int), ('completionString', c_object_p)] def __repr__(self): return str(CompletionString(self.completionString)) @property def kind(self): return CursorKind.from_id(self.cursorKind) @property def string(self): return CompletionString(self.completionString) class CCRStructure(Structure): _fields_ = [('results', POINTER(CodeCompletionResult)), ('numResults', c_int)] def __len__(self): return self.numResults def __getitem__(self, key): if len(self) <= key: raise IndexError return self.results[key] class CodeCompletionResults(ClangObject): def __init__(self, ptr): assert isinstance(ptr, POINTER(CCRStructure)) and ptr self.ptr = self._as_parameter_ = ptr def from_param(self): return self._as_parameter_ def __del__(self): CodeCompletionResults_dispose(self) @property def results(self): return self.ptr.contents @property def diagnostics(self): class DiagnosticsItr: def __init__(self, ccr): self.ccr= ccr def __len__(self): return int(_clang_codeCompleteGetNumDiagnostics(self.ccr)) def __getitem__(self, key): return _clang_codeCompleteGetDiagnostic(self.ccr, key) return DiagnosticsItr(self) class Index(ClangObject): """ The Index type provides the primary interface to the Clang CIndex library, primarily by providing an interface for reading and parsing translation units. """ @staticmethod def create(excludeDecls=False): """ Create a new Index. Parameters: excludeDecls -- Exclude local declarations from translation units. """ return Index(Index_create(excludeDecls, 0)) def __del__(self): Index_dispose(self) def read(self, path): """Load a TranslationUnit from the given AST file.""" return TranslationUnit.from_ast(path, self) def parse(self, path, args=None, unsaved_files=None, options = 0): """Load the translation unit from the given source code file by running clang and generating the AST before loading. Additional command line parameters can be passed to clang via the args parameter. In-memory contents for files can be provided by passing a list of pairs to as unsaved_files, the first item should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. If an error was encountered during parsing, a TranslationUnitLoadError will be raised. """ return TranslationUnit.from_source(path, args, unsaved_files, options, self) class TranslationUnit(ClangObject): """Represents a source code translation unit. This is one of the main types in the API. Any time you wish to interact with Clang's representation of a source file, you typically start with a translation unit. """ # Default parsing mode. PARSE_NONE = 0 # Instruct the parser to create a detailed processing record containing # metadata not normally retained. PARSE_DETAILED_PROCESSING_RECORD = 1 # Indicates that the translation unit is incomplete. This is typically used # when parsing headers. PARSE_INCOMPLETE = 2 # Instruct the parser to create a pre-compiled preamble for the translation # unit. This caches the preamble (included files at top of source file). # This is useful if the translation unit will be reparsed and you don't # want to incur the overhead of reparsing the preamble. PARSE_PRECOMPILED_PREAMBLE = 4 # Cache code completion information on parse. This adds time to parsing but # speeds up code completion. PARSE_CACHE_COMPLETION_RESULTS = 8 # Flags with values 16 and 32 are deprecated and intentionally omitted. # Do not parse function bodies. This is useful if you only care about # searching for declarations/definitions. PARSE_SKIP_FUNCTION_BODIES = 64 @classmethod def from_source(cls, filename, args=None, unsaved_files=None, options=0, index=None): """Create a TranslationUnit by parsing source. This is capable of processing source code both from files on the filesystem as well as in-memory contents. Command-line arguments that would be passed to clang are specified as a list via args. These can be used to specify include paths, warnings, etc. e.g. ["-Wall", "-I/path/to/include"]. In-memory file content can be provided via unsaved_files. This is an iterable of 2-tuples. The first element is the str filename. The second element defines the content. Content can be provided as str source code or as file objects (anything with a read() method). If a file object is being used, content will be read until EOF and the read cursor will not be reset to its original position. options is a bitwise or of TranslationUnit.PARSE_XXX flags which will control parsing behavior. index is an Index instance to utilize. If not provided, a new Index will be created for this TranslationUnit. To parse source from the filesystem, the filename of the file to parse is specified by the filename argument. Or, filename could be None and the args list would contain the filename(s) to parse. To parse source from an in-memory buffer, set filename to the virtual filename you wish to associate with this source (e.g. "test.c"). The contents of that file are then provided in unsaved_files. If an error occurs, a TranslationUnitLoadError is raised. Please note that a TranslationUnit with parser errors may be returned. It is the caller's responsibility to check tu.diagnostics for errors. Also note that Clang infers the source language from the extension of the input filename. If you pass in source code containing a C++ class declaration with the filename "test.c" parsing will fail. """ if args is None: args = [] if unsaved_files is None: unsaved_files = [] if index is None: index = Index.create() args_array = None if len(args) > 0: args_array = (c_char_p * len(args))(* args) unsaved_array = None if len(unsaved_files) > 0: unsaved_array = (_CXUnsavedFile * len(unsaved_files))() for i, (name, contents) in enumerate(unsaved_files): if hasattr(contents, "read"): contents = contents.read() unsaved_array[i].name = name unsaved_array[i].contents = contents unsaved_array[i].length = len(contents) ptr = TranslationUnit_parse(index, filename, args_array, len(args), unsaved_array, len(unsaved_files), options) if ptr is None: raise TranslationUnitLoadError("Error parsing translation unit.") return cls(ptr, index=index) @classmethod def from_ast_file(cls, filename, index=None): """Create a TranslationUnit instance from a saved AST file. A previously-saved AST file (provided with -emit-ast or TranslationUnit.save()) is loaded from the filename specified. If the file cannot be loaded, a TranslationUnitLoadError will be raised. index is optional and is the Index instance to use. If not provided, a default Index will be created. """ if index is None: index = Index.create() ptr = TranslationUnit_read(index, filename) if ptr is None: raise TranslationUnitLoadError(filename) return cls(ptr=ptr, index=index) def __init__(self, ptr, index): """Create a TranslationUnit instance. TranslationUnits should be created using one of the from_* @classmethod functions above. __init__ is only called internally. """ assert isinstance(index, Index) ClangObject.__init__(self, ptr) def __del__(self): TranslationUnit_dispose(self) @property def cursor(self): """Retrieve the cursor that represents the given translation unit.""" return TranslationUnit_cursor(self) @property def spelling(self): """Get the original translation unit source file name.""" return TranslationUnit_spelling(self) def get_includes(self): """ Return an iterable sequence of FileInclusion objects that describe the sequence of inclusions in a translation unit. The first object in this sequence is always the input file. Note that this method will not recursively iterate over header files included through precompiled headers. """ def visitor(fobj, lptr, depth, includes): if depth > 0: loc = lptr.contents includes.append(FileInclusion(loc.file, File(fobj), loc, depth)) # Automatically adapt CIndex/ctype pointers to python objects includes = [] TranslationUnit_includes(self, TranslationUnit_includes_callback(visitor), includes) return iter(includes) @property def diagnostics(self): """ Return an iterable (and indexable) object containing the diagnostics. """ class DiagIterator: def __init__(self, tu): self.tu = tu def __len__(self): return int(_clang_getNumDiagnostics(self.tu)) def __getitem__(self, key): diag = _clang_getDiagnostic(self.tu, key) if not diag: raise IndexError return Diagnostic(diag) return DiagIterator(self) def reparse(self, unsaved_files=None, options=0): """ Reparse an already parsed translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ if unsaved_files is None: unsaved_files = [] unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i,(name,value) in enumerate(unsaved_files): if not isinstance(value, str): # FIXME: It would be great to support an efficient version # of this, one day. value = value.read() print value if not isinstance(value, str): raise TypeError,'Unexpected unsaved file contents.' unsaved_files_array[i].name = name unsaved_files_array[i].contents = value unsaved_files_array[i].length = len(value) ptr = TranslationUnit_reparse(self, len(unsaved_files), unsaved_files_array, options) def save(self, filename): """Saves the TranslationUnit to a file. This is equivalent to passing -emit-ast to the clang frontend. The saved file can be loaded back into a TranslationUnit. Or, if it corresponds to a header, it can be used as a pre-compiled header file. If an error occurs while saving, a TranslationUnitSaveError is raised. If the error was TranslationUnitSaveError.ERROR_INVALID_TU, this means the constructed TranslationUnit was not valid at time of save. In this case, the reason(s) why should be available via TranslationUnit.diagnostics(). filename -- The path to save the translation unit to. """ options = TranslationUnit_defaultSaveOptions(self) result = int(TranslationUnit_save(self, filename, options)) if result != 0: raise TranslationUnitSaveError(result, 'Error saving TranslationUnit.') def codeComplete(self, path, line, column, unsaved_files=None, options=0): """ Code complete in this translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ if unsaved_files is None: unsaved_files = [] unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i,(name,value) in enumerate(unsaved_files): if not isinstance(value, str): # FIXME: It would be great to support an efficient version # of this, one day. value = value.read() print value if not isinstance(value, str): raise TypeError,'Unexpected unsaved file contents.' unsaved_files_array[i].name = name unsaved_files_array[i].contents = value unsaved_files_array[i].length = len(value) ptr = TranslationUnit_codeComplete(self, path, line, column, unsaved_files_array, len(unsaved_files), options) if ptr: return CodeCompletionResults(ptr) return None class File(ClangObject): """ The File class represents a particular source file that is part of a translation unit. """ @staticmethod def from_name(translation_unit, file_name): """Retrieve a file handle within the given translation unit.""" return File(File_getFile(translation_unit, file_name)) @property def name(self): """Return the complete file and path name of the file.""" return _CXString_getCString(File_name(self)) @property def time(self): """Return the last modification time of the file.""" return File_time(self) def __str__(self): return self.name def __repr__(self): return "" % (self.name) class FileInclusion(object): """ The FileInclusion class represents the inclusion of one source file by another via a '#include' directive or as the input file for the translation unit. This class provides information about the included file, the including file, the location of the '#include' directive and the depth of the included file in the stack. Note that the input file has depth 0. """ def __init__(self, src, tgt, loc, depth): self.source = src self.include = tgt self.location = loc self.depth = depth @property def is_input_file(self): """True if the included file is the input file.""" return self.depth == 0 # Additional Functions and Types # String Functions _CXString_dispose = lib.clang_disposeString _CXString_dispose.argtypes = [_CXString] _CXString_getCString = lib.clang_getCString _CXString_getCString.argtypes = [_CXString] _CXString_getCString.restype = c_char_p # Source Location Functions SourceLocation_loc = lib.clang_getInstantiationLocation SourceLocation_loc.argtypes = [SourceLocation, POINTER(c_object_p), POINTER(c_uint), POINTER(c_uint), POINTER(c_uint)] SourceLocation_getLocation = lib.clang_getLocation SourceLocation_getLocation.argtypes = [TranslationUnit, File, c_uint, c_uint] SourceLocation_getLocation.restype = SourceLocation SourceLocation_equalLocations = lib.clang_equalLocations SourceLocation_equalLocations.argtypes = [SourceLocation, SourceLocation] SourceLocation_equalLocations.restype = bool # Source Range Functions SourceRange_getRange = lib.clang_getRange SourceRange_getRange.argtypes = [SourceLocation, SourceLocation] SourceRange_getRange.restype = SourceRange SourceRange_start = lib.clang_getRangeStart SourceRange_start.argtypes = [SourceRange] SourceRange_start.restype = SourceLocation SourceRange_end = lib.clang_getRangeEnd SourceRange_end.argtypes = [SourceRange] SourceRange_end.restype = SourceLocation SourceRange_equalRanges = lib.clang_equalRanges SourceRange_equalRanges.argtypes = [SourceRange, SourceRange] SourceRange_equalRanges.restype = bool # CursorKind Functions CursorKind_is_decl = lib.clang_isDeclaration CursorKind_is_decl.argtypes = [CursorKind] CursorKind_is_decl.restype = bool CursorKind_is_ref = lib.clang_isReference CursorKind_is_ref.argtypes = [CursorKind] CursorKind_is_ref.restype = bool CursorKind_is_expr = lib.clang_isExpression CursorKind_is_expr.argtypes = [CursorKind] CursorKind_is_expr.restype = bool CursorKind_is_stmt = lib.clang_isStatement CursorKind_is_stmt.argtypes = [CursorKind] CursorKind_is_stmt.restype = bool CursorKind_is_attribute = lib.clang_isAttribute CursorKind_is_attribute.argtypes = [CursorKind] CursorKind_is_attribute.restype = bool CursorKind_is_inv = lib.clang_isInvalid CursorKind_is_inv.argtypes = [CursorKind] CursorKind_is_inv.restype = bool CursorKind_is_translation_unit = lib.clang_isTranslationUnit CursorKind_is_translation_unit.argtypes = [CursorKind] CursorKind_is_translation_unit.restype = bool CursorKind_is_preprocessing = lib.clang_isPreprocessing CursorKind_is_preprocessing.argtypes = [CursorKind] CursorKind_is_preprocessing.restype = bool CursorKind_is_unexposed = lib.clang_isUnexposed CursorKind_is_unexposed.argtypes = [CursorKind] CursorKind_is_unexposed.restype = bool # Cursor Functions # TODO: Implement this function Cursor_get = lib.clang_getCursor Cursor_get.argtypes = [TranslationUnit, SourceLocation] Cursor_get.restype = Cursor Cursor_null = lib.clang_getNullCursor Cursor_null.restype = Cursor Cursor_usr = lib.clang_getCursorUSR Cursor_usr.argtypes = [Cursor] Cursor_usr.restype = _CXString Cursor_usr.errcheck = _CXString.from_result Cursor_is_def = lib.clang_isCursorDefinition Cursor_is_def.argtypes = [Cursor] Cursor_is_def.restype = bool Cursor_def = lib.clang_getCursorDefinition Cursor_def.argtypes = [Cursor] Cursor_def.restype = Cursor Cursor_def.errcheck = Cursor.from_result Cursor_eq = lib.clang_equalCursors Cursor_eq.argtypes = [Cursor, Cursor] Cursor_eq.restype = bool Cursor_hash = lib.clang_hashCursor Cursor_hash.argtypes = [Cursor] Cursor_hash.restype = c_uint Cursor_spelling = lib.clang_getCursorSpelling Cursor_spelling.argtypes = [Cursor] Cursor_spelling.restype = _CXString Cursor_spelling.errcheck = _CXString.from_result Cursor_displayname = lib.clang_getCursorDisplayName Cursor_displayname.argtypes = [Cursor] Cursor_displayname.restype = _CXString Cursor_displayname.errcheck = _CXString.from_result Cursor_loc = lib.clang_getCursorLocation Cursor_loc.argtypes = [Cursor] Cursor_loc.restype = SourceLocation Cursor_extent = lib.clang_getCursorExtent Cursor_extent.argtypes = [Cursor] Cursor_extent.restype = SourceRange Cursor_ref = lib.clang_getCursorReferenced Cursor_ref.argtypes = [Cursor] Cursor_ref.restype = Cursor Cursor_ref.errcheck = Cursor.from_result Cursor_canonical = lib.clang_getCanonicalCursor Cursor_canonical.argtypes = [Cursor] Cursor_canonical.restype = Cursor Cursor_canonical.errcheck = Cursor.from_result Cursor_type = lib.clang_getCursorType Cursor_type.argtypes = [Cursor] Cursor_type.restype = Type Cursor_type.errcheck = Type.from_result Cursor_underlying_type = lib.clang_getTypedefDeclUnderlyingType Cursor_underlying_type.argtypes = [Cursor] Cursor_underlying_type.restype = Type Cursor_underlying_type.errcheck = Type.from_result Cursor_enum_type = lib.clang_getEnumDeclIntegerType Cursor_enum_type.argtypes = [Cursor] Cursor_enum_type.restype = Type Cursor_enum_type.errcheck = Type.from_result Cursor_enum_const_decl = lib.clang_getEnumConstantDeclValue Cursor_enum_const_decl.argtypes = [Cursor] Cursor_enum_const_decl.restype = c_longlong Cursor_enum_const_decl_unsigned = lib.clang_getEnumConstantDeclUnsignedValue Cursor_enum_const_decl_unsigned.argtypes = [Cursor] Cursor_enum_const_decl_unsigned.restype = c_ulonglong Cursor_objc_type_encoding = lib.clang_getDeclObjCTypeEncoding Cursor_objc_type_encoding.argtypes = [Cursor] Cursor_objc_type_encoding.restype = _CXString Cursor_objc_type_encoding.errcheck = _CXString.from_result Cursor_semantic_parent = lib.clang_getCursorSemanticParent Cursor_semantic_parent.argtypes = [Cursor] Cursor_semantic_parent.restype = Cursor Cursor_semantic_parent.errcheck = Cursor.from_result Cursor_lexical_parent = lib.clang_getCursorLexicalParent Cursor_lexical_parent.argtypes = [Cursor] Cursor_lexical_parent.restype = Cursor Cursor_lexical_parent.errcheck = Cursor.from_result Cursor_visit_callback = CFUNCTYPE(c_int, Cursor, Cursor, py_object) Cursor_visit = lib.clang_visitChildren Cursor_visit.argtypes = [Cursor, Cursor_visit_callback, py_object] Cursor_visit.restype = c_uint Cursor_CXXMethod_isStatic = lib.clang_CXXMethod_isStatic Cursor_CXXMethod_isStatic.argtypes = [Cursor] Cursor_CXXMethod_isStatic.restype = bool Cursor_CXXMethod_isVirtual = lib.clang_CXXMethod_isVirtual Cursor_CXXMethod_isVirtual.argtypes = [Cursor] Cursor_CXXMethod_isVirtual.restype = bool Cursor_getCXXAccessSpecifier = lib.clang_getCXXAccessSpecifier Cursor_getCXXAccessSpecifier.argtypes = [Cursor] Cursor_getCXXAccessSpecifier.restype = AccessSpecifierKind.from_id # Type Functions Type_get_canonical = lib.clang_getCanonicalType Type_get_canonical.argtypes = [Type] Type_get_canonical.restype = Type Type_get_canonical.errcheck = Type.from_result Type_is_const_qualified = lib.clang_isConstQualifiedType Type_is_const_qualified.argtypes = [Type] Type_is_const_qualified.restype = bool Type_is_volatile_qualified = lib.clang_isVolatileQualifiedType Type_is_volatile_qualified.argtypes = [Type] Type_is_volatile_qualified.restype = bool Type_is_restrict_qualified = lib.clang_isRestrictQualifiedType Type_is_restrict_qualified.argtypes = [Type] Type_is_restrict_qualified.restype = bool Type_is_pod = lib.clang_isPODType Type_is_pod.argtypes = [Type] Type_is_pod.restype = bool Type_is_variadic = lib.clang_isFunctionTypeVariadic Type_is_variadic.argtypes = [Type] Type_is_variadic.restype = bool Type_get_pointee = lib.clang_getPointeeType Type_get_pointee.argtypes = [Type] Type_get_pointee.restype = Type Type_get_pointee.errcheck = Type.from_result Type_get_declaration = lib.clang_getTypeDeclaration Type_get_declaration.argtypes = [Type] Type_get_declaration.restype = Cursor Type_get_declaration.errcheck = Cursor.from_result Type_get_result = lib.clang_getResultType Type_get_result.argtypes = [Type] Type_get_result.restype = Type Type_get_result.errcheck = Type.from_result Type_get_num_arg_types = lib.clang_getNumArgTypes Type_get_num_arg_types.argtypes = [Type] Type_get_num_arg_types.restype = c_uint Type_get_arg_type = lib.clang_getArgType Type_get_arg_type.argtypes = [Type, c_uint] Type_get_arg_type.restype = Type Type_get_arg_type.errcheck = Type.from_result Type_get_element_type = lib.clang_getElementType Type_get_element_type.argtypes = [Type] Type_get_element_type.restype = Type Type_get_element_type.errcheck = Type.from_result Type_get_num_elements = lib.clang_getNumElements Type_get_num_elements.argtypes = [Type] Type_get_num_elements.restype = c_longlong Type_get_array_element = lib.clang_getArrayElementType Type_get_array_element.argtypes = [Type] Type_get_array_element.restype = Type Type_get_array_element.errcheck = Type.from_result Type_get_array_size = lib.clang_getArraySize Type_get_array_size.argtype = [Type] Type_get_array_size.restype = c_longlong Type_equal = lib.clang_equalTypes Type_equal.argtypes = [Type, Type] Type_equal.restype = bool # Index Functions Index_create = lib.clang_createIndex Index_create.argtypes = [c_int, c_int] Index_create.restype = c_object_p Index_dispose = lib.clang_disposeIndex Index_dispose.argtypes = [Index] # Translation Unit Functions TranslationUnit_read = lib.clang_createTranslationUnit TranslationUnit_read.argtypes = [Index, c_char_p] TranslationUnit_read.restype = c_object_p TranslationUnit_parse = lib.clang_parseTranslationUnit TranslationUnit_parse.argtypes = [Index, c_char_p, c_void_p, c_int, c_void_p, c_int, c_int] TranslationUnit_parse.restype = c_object_p TranslationUnit_reparse = lib.clang_reparseTranslationUnit TranslationUnit_reparse.argtypes = [TranslationUnit, c_int, c_void_p, c_int] TranslationUnit_reparse.restype = c_int TranslationUnit_codeComplete = lib.clang_codeCompleteAt TranslationUnit_codeComplete.argtypes = [TranslationUnit, c_char_p, c_int, c_int, c_void_p, c_int, c_int] TranslationUnit_codeComplete.restype = POINTER(CCRStructure) TranslationUnit_cursor = lib.clang_getTranslationUnitCursor TranslationUnit_cursor.argtypes = [TranslationUnit] TranslationUnit_cursor.restype = Cursor TranslationUnit_cursor.errcheck = Cursor.from_result TranslationUnit_spelling = lib.clang_getTranslationUnitSpelling TranslationUnit_spelling.argtypes = [TranslationUnit] TranslationUnit_spelling.restype = _CXString TranslationUnit_spelling.errcheck = _CXString.from_result TranslationUnit_dispose = lib.clang_disposeTranslationUnit TranslationUnit_dispose.argtypes = [TranslationUnit] TranslationUnit_includes_callback = CFUNCTYPE(None, c_object_p, POINTER(SourceLocation), c_uint, py_object) TranslationUnit_includes = lib.clang_getInclusions TranslationUnit_includes.argtypes = [TranslationUnit, TranslationUnit_includes_callback, py_object] TranslationUnit_defaultSaveOptions = lib.clang_defaultSaveOptions TranslationUnit_defaultSaveOptions.argtypes = [TranslationUnit] TranslationUnit_defaultSaveOptions.restype = c_uint TranslationUnit_save = lib.clang_saveTranslationUnit TranslationUnit_save.argtypes = [TranslationUnit, c_char_p, c_uint] TranslationUnit_save.restype = c_int # File Functions File_getFile = lib.clang_getFile File_getFile.argtypes = [TranslationUnit, c_char_p] File_getFile.restype = c_object_p File_name = lib.clang_getFileName File_name.argtypes = [File] File_name.restype = _CXString File_time = lib.clang_getFileTime File_time.argtypes = [File] File_time.restype = c_uint # Code completion CodeCompletionResults_dispose = lib.clang_disposeCodeCompleteResults CodeCompletionResults_dispose.argtypes = [CodeCompletionResults] _clang_codeCompleteGetNumDiagnostics = lib.clang_codeCompleteGetNumDiagnostics _clang_codeCompleteGetNumDiagnostics.argtypes = [CodeCompletionResults] _clang_codeCompleteGetNumDiagnostics.restype = c_int _clang_codeCompleteGetDiagnostic = lib.clang_codeCompleteGetDiagnostic _clang_codeCompleteGetDiagnostic.argtypes = [CodeCompletionResults, c_int] _clang_codeCompleteGetDiagnostic.restype = Diagnostic _clang_getCompletionChunkText = lib.clang_getCompletionChunkText _clang_getCompletionChunkText.argtypes = [c_void_p, c_int] _clang_getCompletionChunkText.restype = _CXString _clang_getCompletionChunkKind = lib.clang_getCompletionChunkKind _clang_getCompletionChunkKind.argtypes = [c_void_p, c_int] _clang_getCompletionChunkKind.restype = c_int _clang_getCompletionChunkCompletionString = lib.clang_getCompletionChunkCompletionString _clang_getCompletionChunkCompletionString.argtypes = [c_void_p, c_int] _clang_getCompletionChunkCompletionString.restype = c_object_p _clang_getNumCompletionChunks = lib.clang_getNumCompletionChunks _clang_getNumCompletionChunks.argtypes = [c_void_p] _clang_getNumCompletionChunks.restype = c_int _clang_getCompletionAvailability = lib.clang_getCompletionAvailability _clang_getCompletionAvailability.argtypes = [c_void_p] _clang_getCompletionAvailability.restype = c_int _clang_getCompletionPriority = lib.clang_getCompletionPriority _clang_getCompletionPriority.argtypes = [c_void_p] _clang_getCompletionPriority.restype = c_int __all__ = [ 'CodeCompletionResults', 'CursorKind', 'Cursor', 'Diagnostic', 'File', 'FixIt', 'Index', 'SourceLocation', 'SourceRange', 'TranslationUnitLoadError', 'TranslationUnit', 'TypeKind', 'Type', ]