/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include <Box2D/Dynamics/Joints/b2FrictionJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>

// Point-to-point constraint
// Cdot = v2 - v1
//      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)

// Angle constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2

void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
{
    bodyA = bA;
    bodyB = bB;
    localAnchorA = bodyA->GetLocalPoint(anchor);
    localAnchorB = bodyB->GetLocalPoint(anchor);
}

b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
: b2Joint(def)
{
    m_localAnchorA = def->localAnchorA;
    m_localAnchorB = def->localAnchorB;

    m_linearImpulse.SetZero();
    m_angularImpulse = 0.0f;

    m_maxForce = def->maxForce;
    m_maxTorque = def->maxTorque;
}

void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data)
{
    m_indexA = m_bodyA->m_islandIndex;
    m_indexB = m_bodyB->m_islandIndex;
    m_localCenterA = m_bodyA->m_sweep.localCenter;
    m_localCenterB = m_bodyB->m_sweep.localCenter;
    m_invMassA = m_bodyA->m_invMass;
    m_invMassB = m_bodyB->m_invMass;
    m_invIA = m_bodyA->m_invI;
    m_invIB = m_bodyB->m_invI;

    float32 aA = data.positions[m_indexA].a;
    b2Vec2 vA = data.velocities[m_indexA].v;
    float32 wA = data.velocities[m_indexA].w;

    float32 aB = data.positions[m_indexB].a;
    b2Vec2 vB = data.velocities[m_indexB].v;
    float32 wB = data.velocities[m_indexB].w;

    b2Rot qA(aA), qB(aB);

    // Compute the effective mass matrix.
    m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);

    // J = [-I -r1_skew I r2_skew]
    //     [ 0       -1 0       1]
    // r_skew = [-ry; rx]

    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
    //     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
    //     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]

    float32 mA = m_invMassA, mB = m_invMassB;
    float32 iA = m_invIA, iB = m_invIB;

    b2Mat22 K;
    K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
    K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
    K.ey.x = K.ex.y;
    K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;

    m_linearMass = K.GetInverse();

    m_angularMass = iA + iB;
    if (m_angularMass > 0.0f)
    {
        m_angularMass = 1.0f / m_angularMass;
    }

    if (data.step.warmStarting)
    {
        // Scale impulses to support a variable time step.
        m_linearImpulse *= data.step.dtRatio;
        m_angularImpulse *= data.step.dtRatio;

        b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
        vA -= mA * P;
        wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
        vB += mB * P;
        wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
    }
    else
    {
        m_linearImpulse.SetZero();
        m_angularImpulse = 0.0f;
    }

    data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}

void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data)
{
    b2Vec2 vA = data.velocities[m_indexA].v;
    float32 wA = data.velocities[m_indexA].w;
    b2Vec2 vB = data.velocities[m_indexB].v;
    float32 wB = data.velocities[m_indexB].w;

    float32 mA = m_invMassA, mB = m_invMassB;
    float32 iA = m_invIA, iB = m_invIB;

    float32 h = data.step.dt;

    // Solve angular friction
    {
        float32 Cdot = wB - wA;
        float32 impulse = -m_angularMass * Cdot;

        float32 oldImpulse = m_angularImpulse;
        float32 maxImpulse = h * m_maxTorque;
        m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
        impulse = m_angularImpulse - oldImpulse;

        wA -= iA * impulse;
        wB += iB * impulse;
    }

    // Solve linear friction
    {
        b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);

        b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
        b2Vec2 oldImpulse = m_linearImpulse;
        m_linearImpulse += impulse;

        float32 maxImpulse = h * m_maxForce;

        if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
        {
            m_linearImpulse.Normalize();
            m_linearImpulse *= maxImpulse;
        }

        impulse = m_linearImpulse - oldImpulse;

        vA -= mA * impulse;
        wA -= iA * b2Cross(m_rA, impulse);

        vB += mB * impulse;
        wB += iB * b2Cross(m_rB, impulse);
    }

    data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}

bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data)
{
    B2_NOT_USED(data);

    return true;
}

b2Vec2 b2FrictionJoint::GetAnchorA() const
{
    return m_bodyA->GetWorldPoint(m_localAnchorA);
}

b2Vec2 b2FrictionJoint::GetAnchorB() const
{
    return m_bodyB->GetWorldPoint(m_localAnchorB);
}

b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
{
    return inv_dt * m_linearImpulse;
}

float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
{
    return inv_dt * m_angularImpulse;
}

void b2FrictionJoint::SetMaxForce(float32 force)
{
    b2Assert(b2IsValid(force) && force >= 0.0f);
    m_maxForce = force;
}

float32 b2FrictionJoint::GetMaxForce() const
{
    return m_maxForce;
}

void b2FrictionJoint::SetMaxTorque(float32 torque)
{
    b2Assert(b2IsValid(torque) && torque >= 0.0f);
    m_maxTorque = torque;
}

float32 b2FrictionJoint::GetMaxTorque() const
{
    return m_maxTorque;
}

void b2FrictionJoint::Dump()
{
    int32 indexA = m_bodyA->m_islandIndex;
    int32 indexB = m_bodyB->m_islandIndex;

    b2Log("  b2FrictionJointDef jd;\n");
    b2Log("  jd.bodyA = bodies[%d];\n", indexA);
    b2Log("  jd.bodyB = bodies[%d];\n", indexB);
    b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
    b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
    b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
    b2Log("  jd.maxForce = %.15lef;\n", m_maxForce);
    b2Log("  jd.maxTorque = %.15lef;\n", m_maxTorque);
    b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}