/* * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include using namespace std; b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const { void* mem = allocator->Allocate(sizeof(b2CircleShape)); b2CircleShape* clone = new (mem) b2CircleShape; *clone = *this; return clone; } int32 b2CircleShape::GetChildCount() const { return 1; } bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const { b2Vec2 center = transform.p + b2Mul(transform.q, m_p); b2Vec2 d = p - center; return b2Dot(d, d) <= m_radius * m_radius; } // Collision Detection in Interactive 3D Environments by Gino van den Bergen // From Section 3.1.2 // x = s + a * r // norm(x) = radius bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, const b2Transform& transform, int32 childIndex) const { B2_NOT_USED(childIndex); b2Vec2 position = transform.p + b2Mul(transform.q, m_p); b2Vec2 s = input.p1 - position; float32 b = b2Dot(s, s) - m_radius * m_radius; // Solve quadratic equation. b2Vec2 r = input.p2 - input.p1; float32 c = b2Dot(s, r); float32 rr = b2Dot(r, r); float32 sigma = c * c - rr * b; // Check for negative discriminant and short segment. if (sigma < 0.0f || rr < b2_epsilon) { return false; } // Find the point of intersection of the line with the circle. float32 a = -(c + b2Sqrt(sigma)); // Is the intersection point on the segment? if (0.0f <= a && a <= input.maxFraction * rr) { a /= rr; output->fraction = a; output->normal = s + a * r; output->normal.Normalize(); return true; } return false; } void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const { B2_NOT_USED(childIndex); b2Vec2 p = transform.p + b2Mul(transform.q, m_p); aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius); aabb->upperBound.Set(p.x + m_radius, p.y + m_radius); } void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const { massData->mass = density * b2_pi * m_radius * m_radius; massData->center = m_p; // inertia about the local origin massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p)); }