// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2021 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- #if !defined(ASTCENC_DECOMPRESS_ONLY) /** * @brief Functions for finding best partition for a block. * * The partition search operates in two stages. The first pass uses kmeans clustering to group * texels into an ideal partitioning for the requested partition count, and then compares that * against the 1024 partitionings generated by the ASTC partition hash function. The generated * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and * partitionings that actually generate fewer than the requested partition count, but only the top * N candidates are actually put through a more detailed search. N is determined by the compressor * quality preset. * * For the detailed search, each candidate is checked against two possible encoding methods: * * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints). * - The best partitioning assuming same chroma colors (RGB + scale endpoints). * * This is implemented by computing the compute mean color and dominant direction for each * partition. This defines two lines, both of which go through the mean color value. * * - One line has a direction defined by the dominant direction; this is used to assess the error * from using an uncorrelated color representation. * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma * (RGB + scale) color representation. * * The best candidate is selected by computing the squared-errors that result from using these * lines for endpoint selection. */ #include "astcenc_internal.h" /** * @brief Pick some initital kmeans cluster centers. * * @param blk The image block color data to compress. * @param texel_count The number of texels in the block. * @param partition_count The number of partitions in the block. * @param[out] cluster_centers The initital partition cluster center colors. */ static void kmeans_init( const image_block& blk, unsigned int texel_count, unsigned int partition_count, vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS] ) { promise(texel_count > 0); promise(partition_count > 0); unsigned int clusters_selected = 0; float distances[BLOCK_MAX_TEXELS]; // Pick a random sample as first cluster center; 145897 from random.org unsigned int sample = 145897 % texel_count; vfloat4 center_color = blk.texel(sample); cluster_centers[clusters_selected] = center_color; clusters_selected++; // Compute the distance to the first cluster center float distance_sum = 0.0f; for (unsigned int i = 0; i < texel_count; i++) { vfloat4 color = blk.texel(i); vfloat4 diff = color - center_color; float distance = dot_s(diff, diff); distance_sum += distance; distances[i] = distance; } // More numbers from random.org for weighted-random center selection const float cluster_cutoffs[9] = { 0.626220f, 0.932770f, 0.275454f, 0.318558f, 0.240113f, 0.009190f, 0.347661f, 0.731960f, 0.156391f }; unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2); // Pick the remaining samples as needed while (true) { // Pick the next center in a weighted-random fashion. float summa = 0.0f; float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++]; for (sample = 0; sample < texel_count; sample++) { summa += distances[sample]; if (summa >= distance_cutoff) { break; } } // Clamp to a valid range and store the selected cluster center sample = astc::min(sample, texel_count - 1); center_color = blk.texel(sample); cluster_centers[clusters_selected++] = center_color; if (clusters_selected >= partition_count) { break; } // Compute the distance to the new cluster center, keep the min dist distance_sum = 0.0f; for (unsigned int i = 0; i < texel_count; i++) { vfloat4 color = blk.texel(i); vfloat4 diff = color - center_color; float distance = dot_s(diff, diff); distance = astc::min(distance, distances[i]); distance_sum += distance; distances[i] = distance; } } } /** * @brief Assign texels to clusters, based on a set of chosen center points. * * @param blk The image block color data to compress. * @param texel_count The number of texels in the block. * @param partition_count The number of partitions in the block. * @param cluster_centers The partition cluster center colors. * @param[out] partition_of_texel The partition assigned for each texel. */ static void kmeans_assign( const image_block& blk, unsigned int texel_count, unsigned int partition_count, const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS], uint8_t partition_of_texel[BLOCK_MAX_TEXELS] ) { promise(texel_count > 0); promise(partition_count > 0); uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 }; // Find the best partition for every texel for (unsigned int i = 0; i < texel_count; i++) { float best_distance = std::numeric_limits::max(); unsigned int best_partition = 0; vfloat4 color = blk.texel(i); for (unsigned int j = 0; j < partition_count; j++) { vfloat4 diff = color - cluster_centers[j]; float distance = dot_s(diff, diff); if (distance < best_distance) { best_distance = distance; best_partition = j; } } partition_of_texel[i] = best_partition; partition_texel_count[best_partition]++; } // It is possible to get a situation where a partition ends up without any texels. In this case, // assign texel N to partition N. This is silly, but ensures that every partition retains at // least one texel. Reassigning a texel in this manner may cause another partition to go empty, // so if we actually did a reassignment, run the whole loop over again. bool problem_case; do { problem_case = false; for (unsigned int i = 0; i < partition_count; i++) { if (partition_texel_count[i] == 0) { partition_texel_count[partition_of_texel[i]]--; partition_texel_count[i]++; partition_of_texel[i] = i; problem_case = true; } } } while (problem_case); } /** * @brief Compute new cluster centers based on their center of gravity. * * @param blk The image block color data to compress. * @param texel_count The number of texels in the block. * @param partition_count The number of partitions in the block. * @param[out] cluster_centers The new cluster center colors. * @param partition_of_texel The partition assigned for each texel. */ static void kmeans_update( const image_block& blk, unsigned int texel_count, unsigned int partition_count, vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS], const uint8_t partition_of_texel[BLOCK_MAX_TEXELS] ) { promise(texel_count > 0); promise(partition_count > 0); vfloat4 color_sum[BLOCK_MAX_PARTITIONS] { vfloat4::zero(), vfloat4::zero(), vfloat4::zero(), vfloat4::zero() }; uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 }; // Find the center-of-gravity in each cluster for (unsigned int i = 0; i < texel_count; i++) { uint8_t partition = partition_of_texel[i]; color_sum[partition] += blk.texel(i);; partition_texel_count[partition]++; } // Set the center of gravity to be the new cluster center for (unsigned int i = 0; i < partition_count; i++) { float scale = 1.0f / static_cast(partition_texel_count[i]); cluster_centers[i] = color_sum[i] * scale; } } /** * @brief Compute bit-mismatch for partitioning in 2-partition mode. * * @param a The texel assignment bitvector for the block. * @param b The texel assignment bitvector for the partition table. * * @return The number of bit mismatches. */ static inline unsigned int partition_mismatch2( const uint64_t a[2], const uint64_t b[2] ) { int v1 = astc::popcount(a[0] ^ b[0]) + astc::popcount(a[1] ^ b[1]); int v2 = astc::popcount(a[0] ^ b[1]) + astc::popcount(a[1] ^ b[0]); return astc::min(v1, v2); } /** * @brief Compute bit-mismatch for partitioning in 3-partition mode. * * @param a The texel assignment bitvector for the block. * @param b The texel assignment bitvector for the partition table. * * @return The number of bit mismatches. */ static inline unsigned int partition_mismatch3( const uint64_t a[3], const uint64_t b[3] ) { int p00 = astc::popcount(a[0] ^ b[0]); int p01 = astc::popcount(a[0] ^ b[1]); int p02 = astc::popcount(a[0] ^ b[2]); int p10 = astc::popcount(a[1] ^ b[0]); int p11 = astc::popcount(a[1] ^ b[1]); int p12 = astc::popcount(a[1] ^ b[2]); int p20 = astc::popcount(a[2] ^ b[0]); int p21 = astc::popcount(a[2] ^ b[1]); int p22 = astc::popcount(a[2] ^ b[2]); int s0 = p11 + p22; int s1 = p12 + p21; int v0 = astc::min(s0, s1) + p00; int s2 = p10 + p22; int s3 = p12 + p20; int v1 = astc::min(s2, s3) + p01; int s4 = p10 + p21; int s5 = p11 + p20; int v2 = astc::min(s4, s5) + p02; return astc::min(v0, v1, v2); } /** * @brief Compute bit-mismatch for partitioning in 4-partition mode. * * @param a The texel assignment bitvector for the block. * @param b The texel assignment bitvector for the partition table. * * @return The number of bit mismatches. */ static inline unsigned int partition_mismatch4( const uint64_t a[4], const uint64_t b[4] ) { int p00 = astc::popcount(a[0] ^ b[0]); int p01 = astc::popcount(a[0] ^ b[1]); int p02 = astc::popcount(a[0] ^ b[2]); int p03 = astc::popcount(a[0] ^ b[3]); int p10 = astc::popcount(a[1] ^ b[0]); int p11 = astc::popcount(a[1] ^ b[1]); int p12 = astc::popcount(a[1] ^ b[2]); int p13 = astc::popcount(a[1] ^ b[3]); int p20 = astc::popcount(a[2] ^ b[0]); int p21 = astc::popcount(a[2] ^ b[1]); int p22 = astc::popcount(a[2] ^ b[2]); int p23 = astc::popcount(a[2] ^ b[3]); int p30 = astc::popcount(a[3] ^ b[0]); int p31 = astc::popcount(a[3] ^ b[1]); int p32 = astc::popcount(a[3] ^ b[2]); int p33 = astc::popcount(a[3] ^ b[3]); int mx23 = astc::min(p22 + p33, p23 + p32); int mx13 = astc::min(p21 + p33, p23 + p31); int mx12 = astc::min(p21 + p32, p22 + p31); int mx03 = astc::min(p20 + p33, p23 + p30); int mx02 = astc::min(p20 + p32, p22 + p30); int mx01 = astc::min(p21 + p30, p20 + p31); int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12); int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02); int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01); int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12); return astc::min(v0, v1, v2, v3); } using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*); /** * @brief Count the partition table mismatches vs the data clustering. * * @param bsd The block size information. * @param partition_count The number of partitions in the block. * @param bitmaps The block texel partition assignment patterns. * @param[out] mismatch_counts The array storing per partitioning mismatch counts. */ static void count_partition_mismatch_bits( const block_size_descriptor& bsd, unsigned int partition_count, const uint64_t bitmaps[BLOCK_MAX_PARTITIONS], unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS] ) { const auto* pt = bsd.get_partition_table(partition_count); // Function pointer dispatch table const mismatch_dispatch dispatch[3] { partition_mismatch2, partition_mismatch3, partition_mismatch4 }; for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++) { int bitcount = 255; if (pt->partition_count == partition_count) { bitcount = dispatch[partition_count - 2](bitmaps, pt->coverage_bitmaps); } mismatch_counts[i] = bitcount; pt++; } } /** * @brief Use counting sort on the mismatch array to sort partition candidates. * * @param mismatch_count Partitioning mismatch counts, in index order. * @param[out] partition_ordering Partition index values, in mismatch order. */ static void get_partition_ordering_by_mismatch_bits( const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS], unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS] ) { unsigned int mscount[256] { 0 }; // Create the histogram of mismatch counts for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++) { mscount[mismatch_count[i]]++; } // Create a running sum from the histogram array // Cells store previous values only; i.e. exclude self after sum unsigned int summa = 0; for (unsigned int i = 0; i < 256; i++) { unsigned int cnt = mscount[i]; mscount[i] = summa; summa += cnt; } // Use the running sum as the index, incrementing after read to allow // sequential entries with the same count for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++) { unsigned int idx = mscount[mismatch_count[i]]++; partition_ordering[idx] = i; } } /** * @brief Use k-means clustering to compute a partition ordering for a block.. * * @param bsd The block size information. * @param blk The image block color data to compress. * @param partition_count The desired number of partitions in the block. * @param[out] partition_ordering The list of recommended partition indices, in priority order. */ static void compute_kmeans_partition_ordering( const block_size_descriptor& bsd, const image_block& blk, unsigned int partition_count, unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS] ) { vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]; uint8_t texel_partitions[BLOCK_MAX_TEXELS]; // Use three passes of k-means clustering to partition the block data for (unsigned int i = 0; i < 3; i++) { if (i == 0) { kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers); } else { kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions); } kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions); } // Construct the block bitmaps of texel assignments to each partition uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 }; unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS); promise(texels_to_process > 0); for (unsigned int i = 0; i < texels_to_process; i++) { unsigned int idx = bsd.kmeans_texels[i]; bitmaps[texel_partitions[idx]] |= 1ULL << i; } // Count the mismatch between the block and the format's partition tables unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS]; count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts); // Sort the partitions based on the number of mismatched bits get_partition_ordering_by_mismatch_bits(mismatch_counts, partition_ordering); } /* See header for documentation. */ void find_best_partition_candidates( const block_size_descriptor& bsd, const image_block& blk, const error_weight_block& ewb, unsigned int partition_count, unsigned int partition_search_limit, unsigned int& best_partition_uncor, unsigned int& best_partition_samec, unsigned int* best_partition_dualplane ) { // Constant used to estimate quantization error for a given partitioning; the optimal value for // this depends on bitrate. These values have been determined empirically. unsigned int texels_per_block = bsd.texel_count; float weight_imprecision_estim = 0.055f; if (texels_per_block <= 20) { weight_imprecision_estim = 0.03f; } else if (texels_per_block <= 31) { weight_imprecision_estim = 0.04f; } else if (texels_per_block <= 41) { weight_imprecision_estim = 0.05f; } promise(partition_count > 0); promise(partition_search_limit > 0); weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim; unsigned int partition_sequence[BLOCK_MAX_PARTITIONINGS]; compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence); bool uses_alpha = blk.is_using_alpha(); // Partitioning errors assuming uncorrelated-chrominance endpoints float uncor_best_error { ERROR_CALC_DEFAULT }; unsigned int uncor_best_partition { 0 }; // Partitioning errors assuming same-chrominance endpoints // Store two so we can always return one different to uncorr float samec_best_errors[2] { ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT }; unsigned int samec_best_partitions[2] { 0, 0 }; // Partitioning errors assuming that one color component is uncorrelated float sep_best_error { ERROR_CALC_DEFAULT }; unsigned int sep_best_partition { 0 }; unsigned int sep_best_component { 0 }; bool skip_two_plane = best_partition_dualplane == nullptr; if (uses_alpha) { for (unsigned int i = 0; i < partition_search_limit; i++) { unsigned int partition = partition_sequence[i]; const auto& pi = bsd.get_partition_info(partition_count, partition); unsigned int bk_partition_count = pi.partition_count; if (bk_partition_count < partition_count) { break; } // Compute weighting to give to each component in each partition partition_metrics pms[BLOCK_MAX_PARTITIONS]; compute_avgs_and_dirs_4_comp(pi, blk, ewb, pms); line4 uncor_lines[BLOCK_MAX_PARTITIONS]; line4 samec_lines[BLOCK_MAX_PARTITIONS]; line3 sep_r_lines[BLOCK_MAX_PARTITIONS]; line3 sep_g_lines[BLOCK_MAX_PARTITIONS]; line3 sep_b_lines[BLOCK_MAX_PARTITIONS]; line3 sep_a_lines[BLOCK_MAX_PARTITIONS]; processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS]; processed_line4 samec_plines[BLOCK_MAX_PARTITIONS]; float uncor_line_lens[BLOCK_MAX_PARTITIONS]; float samec_line_lens[BLOCK_MAX_PARTITIONS]; for (unsigned int j = 0; j < partition_count; j++) { partition_metrics& pm = pms[j]; uncor_lines[j].a = pm.avg; uncor_lines[j].b = normalize_safe(pm.dir, unit4()); uncor_plines[j].amod = (uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b)) * pm.icolor_scale; uncor_plines[j].bs = uncor_lines[j].b * pm.color_scale; uncor_plines[j].bis = uncor_lines[j].b * pm.icolor_scale; samec_lines[j].a = vfloat4::zero(); samec_lines[j].b = normalize_safe(pm.avg, unit4()); samec_plines[j].amod = vfloat4::zero(); samec_plines[j].bs = samec_lines[j].b * pm.color_scale; samec_plines[j].bis = samec_lines[j].b * pm.icolor_scale; if (!skip_two_plane) { sep_r_lines[j].a = pm.avg.swz<1, 2, 3>(); vfloat4 dirs_gba = pm.dir.swz<1, 2, 3>(); sep_r_lines[j].b = normalize_safe(dirs_gba, unit3()); sep_g_lines[j].a = pm.avg.swz<0, 2, 3>(); vfloat4 dirs_rba = pm.dir.swz<0, 2, 3>(); sep_g_lines[j].b = normalize_safe(dirs_rba, unit3()); sep_b_lines[j].a = pm.avg.swz<0, 1, 3>(); vfloat4 dirs_rga = pm.dir.swz<0, 1, 3>(); sep_b_lines[j].b = normalize_safe(dirs_rga, unit3()); sep_a_lines[j].a = pm.avg.swz<0, 1, 2>(); vfloat4 dirs_rgb = pm.dir.swz<0, 1, 2>(); sep_a_lines[j].b = normalize_safe(dirs_rgb, unit3()); } } float uncor_error = 0.0f; float samec_error = 0.0f; vfloat4 sep_error = vfloat4::zero(); compute_error_squared_rgba(pi, blk, ewb, uncor_plines, samec_plines, uncor_line_lens, samec_line_lens, uncor_error, samec_error); // Compute an estimate of error introduced by weight quantization imprecision. // This error is computed as follows, for each partition // 1: compute the principal-axis vector (full length) in error-space // 2: convert the principal-axis vector to regular RGB-space // 3: scale the vector by a constant that estimates average quantization error // 4: for each texel, square the vector, then do a dot-product with the texel's // error weight; sum up the results across all texels. // 4(optimized): square the vector once, then do a dot-product with the average // texel error, then multiply by the number of texels. for (unsigned int j = 0; j < partition_count; j++) { partition_metrics& pm = pms[j]; float tpp = (float)(pi.partition_texel_count[j]); vfloat4 ics = pm.icolor_scale; vfloat4 error_weights = pm.error_weight * (tpp * weight_imprecision_estim); vfloat4 uncor_vector = uncor_lines[j].b * uncor_line_lens[j] * ics; vfloat4 samec_vector = samec_lines[j].b * samec_line_lens[j] * ics; uncor_vector = uncor_vector * uncor_vector; samec_vector = samec_vector * samec_vector; uncor_error += dot_s(uncor_vector, error_weights); samec_error += dot_s(samec_vector, error_weights); if (!skip_two_plane) { vfloat4 sep_r_vector = sep_r_lines[j].b * ics.swz<1, 2, 3, 0>(); vfloat4 sep_g_vector = sep_g_lines[j].b * ics.swz<0, 2, 3, 1>(); vfloat4 sep_b_vector = sep_b_lines[j].b * ics.swz<0, 1, 3, 2>(); vfloat4 sep_a_vector = sep_a_lines[j].b * ics.swz<0, 1, 2, 3>(); sep_r_vector = sep_r_vector * sep_r_vector; sep_g_vector = sep_g_vector * sep_g_vector; sep_b_vector = sep_b_vector * sep_b_vector; sep_a_vector = sep_a_vector * sep_a_vector; vfloat4 sep_err_inc(dot3_s(sep_r_vector, error_weights.swz<1, 2, 3, 0>()), dot3_s(sep_g_vector, error_weights.swz<0, 2, 3, 1>()), dot3_s(sep_b_vector, error_weights.swz<0, 1, 3, 2>()), dot3_s(sep_a_vector, error_weights.swz<0, 1, 2, 3>())); sep_error = sep_error + sep_err_inc + pm.range_sq * error_weights; } } if (uncor_error < uncor_best_error) { uncor_best_error = uncor_error; uncor_best_partition = partition; } if (samec_error < samec_best_errors[0]) { samec_best_errors[1] = samec_best_errors[0]; samec_best_partitions[1] = samec_best_partitions[0]; samec_best_errors[0] = samec_error; samec_best_partitions[0] = partition; } else if (samec_error < samec_best_errors[1]) { samec_best_errors[1] = samec_error; samec_best_partitions[1] = partition; } if (!skip_two_plane) { if (sep_error.lane<0>() < sep_best_error) { sep_best_error = sep_error.lane<0>(); sep_best_partition = partition; sep_best_component = 0; } if (sep_error.lane<1>() < sep_best_error) { sep_best_error = sep_error.lane<1>(); sep_best_partition = partition; sep_best_component = 1; } if (sep_error.lane<2>() < sep_best_error) { sep_best_error = sep_error.lane<2>(); sep_best_partition = partition; sep_best_component = 2; } if (sep_error.lane<3>() < sep_best_error) { sep_best_error = sep_error.lane<3>(); sep_best_partition = partition; sep_best_component = 3; } } } } else { for (unsigned int i = 0; i < partition_search_limit; i++) { unsigned int partition = partition_sequence[i]; const auto& pi = bsd.get_partition_info(partition_count, partition); unsigned int bk_partition_count = pi.partition_count; if (bk_partition_count < partition_count) { break; } // Compute weighting to give to each component in each partition partition_metrics pms[BLOCK_MAX_PARTITIONS]; compute_avgs_and_dirs_3_comp(pi, blk, ewb, 3, pms); partition_lines3 plines[BLOCK_MAX_PARTITIONS]; line2 sep_r_lines[BLOCK_MAX_PARTITIONS]; line2 sep_g_lines[BLOCK_MAX_PARTITIONS]; line2 sep_b_lines[BLOCK_MAX_PARTITIONS]; for (unsigned int j = 0; j < partition_count; j++) { partition_metrics& pm = pms[j]; partition_lines3& pl = plines[j]; pl.uncor_line.a = pm.avg; pl.uncor_line.b = normalize_safe(pm.dir.swz<0, 1, 2>(), unit3()); pl.samec_line.a = vfloat4::zero(); pl.samec_line.b = normalize_safe(pm.avg.swz<0, 1, 2>(), unit3()); pl.uncor_pline.amod = (pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b)) * pm.icolor_scale.swz<0, 1, 2, 3>(); pl.uncor_pline.bs = (pl.uncor_line.b * pm.color_scale.swz<0, 1, 2, 3>()); pl.uncor_pline.bis = (pl.uncor_line.b * pm.icolor_scale.swz<0, 1, 2, 3>()); pl.samec_pline.amod = vfloat4::zero(); pl.samec_pline.bs = (pl.samec_line.b * pm.color_scale.swz<0, 1, 2, 3>()); pl.samec_pline.bis = (pl.samec_line.b * pm.icolor_scale.swz<0, 1, 2, 3>()); if (!skip_two_plane) { sep_r_lines[j].a = pm.avg.swz<1, 2>(); vfloat4 dirs_gb = pm.dir.swz<1, 2>(); sep_r_lines[j].b = normalize_safe(dirs_gb, unit2()); sep_g_lines[j].a = pm.avg.swz<0, 2>(); vfloat4 dirs_rb = pm.dir.swz<0, 2>(); sep_g_lines[j].b = normalize_safe(dirs_rb, unit2()); sep_b_lines[j].a = pm.avg.swz<0, 1>(); vfloat4 dirs_rg = pm.dir.swz<0, 1>(); sep_b_lines[j].b = normalize_safe(dirs_rg, unit2()); } } float uncor_error = 0.0f; float samec_error = 0.0f; vfloat4 sep_error = vfloat4::zero(); compute_error_squared_rgb(pi, blk, ewb, plines, uncor_error, samec_error); // Compute an estimate of error introduced by weight quantization imprecision. // This error is computed as follows, for each partition // 1: compute the principal-axis vector (full length) in error-space // 2: convert the principal-axis vector to regular RGB-space // 3: scale the vector by a constant that estimates average quantization error // 4: for each texel, square the vector, then do a dot-product with the texel's // error weight; sum up the results across all texels. // 4(optimized): square the vector once, then do a dot-product with the average // texel error, then multiply by the number of texels. for (unsigned int j = 0; j < partition_count; j++) { partition_metrics& pm = pms[j]; partition_lines3& pl = plines[j]; float tpp = (float)(pi.partition_texel_count[j]); vfloat4 ics = pm.icolor_scale; ics.set_lane<3>(0.0f); vfloat4 error_weights = pm.error_weight * (tpp * weight_imprecision_estim); error_weights.set_lane<3>(0.0f); vfloat4 uncor_vector = (pl.uncor_line.b * pl.uncor_line_len) * ics; vfloat4 samec_vector = (pl.samec_line.b * pl.samec_line_len) * ics; uncor_vector = uncor_vector * uncor_vector; samec_vector = samec_vector * samec_vector; uncor_error += dot3_s(uncor_vector, error_weights); samec_error += dot3_s(samec_vector, error_weights); if (!skip_two_plane) { vfloat4 sep_r_vector = sep_r_lines[j].b * ics.swz<1, 2>(); vfloat4 sep_g_vector = sep_g_lines[j].b * ics.swz<0, 2>(); vfloat4 sep_b_vector = sep_b_lines[j].b * ics.swz<0, 1>(); sep_r_vector = sep_r_vector * sep_r_vector; sep_g_vector = sep_g_vector * sep_g_vector; sep_b_vector = sep_b_vector * sep_b_vector; sep_error.set_lane<0>(sep_error.lane<0>() + dot_s(sep_r_vector, error_weights.swz<1, 2>())); sep_error.set_lane<1>(sep_error.lane<1>() + dot_s(sep_g_vector, error_weights.swz<0, 2>())); sep_error.set_lane<2>(sep_error.lane<2>() + dot_s(sep_b_vector, error_weights.swz<0, 1>())); sep_error.set_lane<0>(sep_error.lane<0>() + pm.range_sq.lane<0>() * error_weights.lane<0>()); sep_error.set_lane<1>(sep_error.lane<1>() + pm.range_sq.lane<1>() * error_weights.lane<1>()); sep_error.set_lane<2>(sep_error.lane<2>() + pm.range_sq.lane<2>() * error_weights.lane<2>()); } } if (uncor_error < uncor_best_error) { uncor_best_error = uncor_error; uncor_best_partition = partition; } if (samec_error < samec_best_errors[0]) { samec_best_errors[1] = samec_best_errors[0]; samec_best_partitions[1] = samec_best_partitions[0]; samec_best_errors[0] = samec_error; samec_best_partitions[0] = partition; } else if (samec_error < samec_best_errors[1]) { samec_best_errors[1] = samec_error; samec_best_partitions[1] = partition; } if (!skip_two_plane) { if (sep_error.lane<0>() < sep_best_error) { sep_best_error = sep_error.lane<0>(); sep_best_partition = partition; sep_best_component = 0; } if (sep_error.lane<1>() < sep_best_error) { sep_best_error = sep_error.lane<1>(); sep_best_partition = partition; sep_best_component = 1; } if (sep_error.lane<2>() < sep_best_error) { sep_best_error = sep_error.lane<2>(); sep_best_partition = partition; sep_best_component = 2; } } } } best_partition_uncor = uncor_best_partition; unsigned int index = samec_best_partitions[0] != uncor_best_partition ? 0 : 1; best_partition_samec = samec_best_partitions[index]; if (best_partition_dualplane) { *best_partition_dualplane = (sep_best_component << PARTITION_INDEX_BITS) | (sep_best_partition); } } #endif