/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sw=4 et tw=78: * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jsgc_root_h__ #define jsgc_root_h__ #include "mozilla/GuardObjects.h" #include "mozilla/TypeTraits.h" #include "js/Utility.h" #include "js/TemplateLib.h" #include "jspubtd.h" /* * Moving GC Stack Rooting * * A moving GC may change the physical location of GC allocated things, even * when they are rooted, updating all pointers to the thing to refer to its new * location. The GC must therefore know about all live pointers to a thing, * not just one of them, in order to behave correctly. * * The |Root| and |Handle| classes below are used to root stack locations * whose value may be held live across a call that can trigger GC. For a * code fragment such as: * * JSObject *obj = NewObject(cx); * DoSomething(cx); * ... = obj->lastProperty(); * * If |DoSomething()| can trigger a GC, the stack location of |obj| must be * rooted to ensure that the GC does not move the JSObject referred to by * |obj| without updating |obj|'s location itself. This rooting must happen * regardless of whether there are other roots which ensure that the object * itself will not be collected. * * If |DoSomething()| cannot trigger a GC, and the same holds for all other * calls made between |obj|'s definitions and its last uses, then no rooting * is required. The |Unrooted| class below is used to ensure that this * property is true and remains true in the future. * * SpiderMonkey can trigger a GC at almost any time and in ways that are not * always clear. For example, the following innocuous-looking actions can * cause a GC: allocation of any new GC thing; JSObject::hasProperty; * JS_ReportError and friends; and ToNumber, among many others. The following * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_, * rt->malloc_, and friends and JS_ReportOutOfMemory. * * The following family of four classes will exactly root a stack location. * Incorrect usage of these classes will result in a compile error in almost * all cases. Therefore, it is very hard to be incorrectly rooted if you use * these classes exclusively. These classes are all templated on the type T of * the value being rooted. * * - Rooted declares a variable of type T, whose value is always rooted. * Rooted may be automatically coerced to a Handle, below. Rooted * should be used whenever a local variable's value may be held live across a * call which can trigger a GC. This is generally true of * * - Handle is a const reference to a Rooted. Functions which take GC * things or values as arguments and need to root those arguments should * generally use handles for those arguments and avoid any explicit rooting. * This has two benefits. First, when several such functions call each other * then redundant rooting of multiple copies of the GC thing can be avoided. * Second, if the caller does not pass a rooted value a compile error will be * generated, which is quicker and easier to fix than when relying on a * separate rooting analysis. * * - MutableHandle is a non-const reference to Rooted. It is used in the * same way as Handle and includes a |set(const T &v)| method to allow * updating the value of the referenced Rooted. A MutableHandle can be * created from a Rooted by using |Rooted::operator&()|. * * In some cases the small performance overhead of exact rooting is too much. * In these cases, try the following: * * - Move all Rooted above inner loops: this allows you to re-use the root * on each iteration of the loop. * * - Pass Handle through your hot call stack to avoid re-rooting costs at * every invocation. * * If this is not enough, the following family of two classes and two * functions can provide partially type-safe and mostly runtime-safe access to * GC things. * * - AutoAssertNoGC is a scoped guard that will trigger an assertion if a GC, * or an appropriately marked method that might GC, is entered when it is in * scope. By convention the name given to instances of this guard is |nogc|. * * - AssertCanGC() will assert if an AutoAssertNoGC is in scope either locally * or anywhere in the call stack. * * - UnrootedT is a typedef for a pointer to thing of type T. In DEBUG builds * it gets replaced by a class that additionally acts as an AutoAssertNoGC * guard. Since there is only minimal compile-time protection against * mis-use, UnrootedT should only be used in places where there is adequate * coverage of AutoAssertNoGC and AssertCanGC guards to ensure that mis-use * is caught at runtime. * * - DropUnrooted(UnrootedT &v) will poison |v| and end its AutoAssertNoGC * scope. This can be used to force |v| out of scope before its C++ scope * would end naturally. The usage of braces C++ syntactical scopes |{...}| * is strongly perferred to this, but sometimes will not work because of * awkwardly overlapping lifetimes. * * There also exists a set of RawT typedefs for modules without rooting * concerns, such as the GC. Do not use these as they provide no rooting * protection whatsoever. * * The following diagram explains the list of supported, implicit type * conversions between classes of this family: * * RawT ----> UnrootedT * | ^ * | | * | v * +--------> Rooted <---> Handle * ^ ^ * | | * | | * +---> MutableHandle * (via &) * * Currently all of these types implicit conversion to RawT. These are present * only for the purpose of bootstrapping exact rooting and will be removed in * the future (Bug 817164). */ namespace js { template class Rooted; template class Unrooted; template struct RootMethods {}; template class RootedBase {}; template class HandleBase {}; template class MutableHandleBase {}; } /* namespace js */ namespace JS { class AutoAssertNoGC; template class Handle; template class MutableHandle; JS_FRIEND_API(void) EnterAssertNoGCScope(); JS_FRIEND_API(void) LeaveAssertNoGCScope(); /* These are exposing internal state of the GC for inlining purposes. */ JS_FRIEND_API(bool) InNoGCScope(); JS_FRIEND_API(bool) isGCEnabled(); /* * Handle provides an implicit constructor for NullPtr so that, given: * foo(Handle h); * callers can simply write: * foo(NullPtr()); * which avoids creating a Rooted just to pass NULL. */ struct NullPtr { static void * const constNullValue; }; /* * Reference to a T that has been rooted elsewhere. This is most useful * as a parameter type, which guarantees that the T lvalue is properly * rooted. See "Move GC Stack Rooting" above. * * If you want to add additional methods to Handle for a specific * specialization, define a HandleBase specialization containing them. */ template class Handle : public js::HandleBase { friend class MutableHandle; public: /* Creates a handle from a handle of a type convertible to T. */ template Handle(Handle handle, typename mozilla::EnableIf::value, int>::Type dummy = 0) { ptr = reinterpret_cast(handle.address()); } /* Create a handle for a NULL pointer. */ Handle(NullPtr) { typedef typename js::tl::StaticAssert::result>::result _; ptr = reinterpret_cast(&NullPtr::constNullValue); } Handle(MutableHandle handle) { ptr = handle.address(); } /* * This may be called only if the location of the T is guaranteed * to be marked (for some reason other than being a Rooted), * e.g., if it is guaranteed to be reachable from an implicit root. * * Create a Handle from a raw location of a T. */ static Handle fromMarkedLocation(const T *p) { Handle h; h.ptr = p; return h; } /* * Construct a handle from an explicitly rooted location. This is the * normal way to create a handle, and normally happens implicitly. */ template inline Handle(js::Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); /* Construct a read only handle from a mutable handle. */ template inline Handle(MutableHandle &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); const T *address() const { return ptr; } T get() const { return *ptr; } operator T() const { return get(); } T operator->() const { return get(); } bool operator!=(const T &other) { return *ptr != other; } private: Handle() {} const T *ptr; template void operator=(S v) MOZ_DELETE; }; typedef Handle HandleObject; typedef Handle HandleFunction; typedef Handle HandleScript; typedef Handle HandleString; typedef Handle HandleId; typedef Handle HandleValue; /* * Similar to a handle, but the underlying storage can be changed. This is * useful for outparams. * * If you want to add additional methods to MutableHandle for a specific * specialization, define a MutableHandleBase specialization containing * them. */ template class MutableHandle : public js::MutableHandleBase { public: template MutableHandle(MutableHandle handle, typename mozilla::EnableIf::value, int>::Type dummy = 0) { this->ptr = reinterpret_cast(handle.address()); } template inline MutableHandle(js::Rooted *root, typename mozilla::EnableIf::value, int>::Type dummy = 0); void set(T v) { JS_ASSERT(!js::RootMethods::poisoned(v)); *ptr = v; } template inline void set(const js::Unrooted &v); /* * This may be called only if the location of the T is guaranteed * to be marked (for some reason other than being a Rooted), * e.g., if it is guaranteed to be reachable from an implicit root. * * Create a MutableHandle from a raw location of a T. */ static MutableHandle fromMarkedLocation(T *p) { MutableHandle h; h.ptr = p; return h; } T *address() const { return ptr; } T get() const { return *ptr; } operator T() const { return get(); } T operator->() const { return get(); } private: MutableHandle() {} T *ptr; template void operator=(S v) MOZ_DELETE; }; typedef MutableHandle MutableHandleObject; typedef MutableHandle MutableHandleFunction; typedef MutableHandle MutableHandleScript; typedef MutableHandle MutableHandleString; typedef MutableHandle MutableHandleId; typedef MutableHandle MutableHandleValue; } /* namespace JS */ namespace js { /* * Raw pointer used as documentation that a parameter does not need to be * rooted. */ typedef JSObject * RawObject; typedef JSString * RawString; typedef jsid RawId; typedef JS::Value RawValue; /* * InternalHandle is a handle to an internal pointer into a gcthing. Use * InternalHandle when you have a pointer to a direct field of a gcthing, or * when you need a parameter type for something that *may* be a pointer to a * direct field of a gcthing. */ template class InternalHandle {}; template class InternalHandle { void * const *holder; size_t offset; public: /* * Create an InternalHandle using a Handle to the gcthing containing the * field in question, and a pointer to the field. */ template InternalHandle(const JS::Handle &handle, T *field) : holder((void**)handle.address()), offset(uintptr_t(field) - uintptr_t(handle.get())) {} /* * Create an InternalHandle to a field within a Rooted<>. */ template InternalHandle(const Rooted &root, T *field) : holder((void**)root.address()), offset(uintptr_t(field) - uintptr_t(root.get())) {} T *get() const { return reinterpret_cast(uintptr_t(*holder) + offset); } const T &operator*() const { return *get(); } T *operator->() const { return get(); } static InternalHandle fromMarkedLocation(T *fieldPtr) { return InternalHandle(fieldPtr); } private: /* * Create an InternalHandle to something that is not a pointer to a * gcthing, and so does not need to be rooted in the first place. Use these * InternalHandles to pass pointers into functions that also need to accept * regular InternalHandles to gcthing fields. * * Make this private to prevent accidental misuse; this is only for * fromMarkedLocation(). */ InternalHandle(T *field) : holder(reinterpret_cast(&JS::NullPtr::constNullValue)), offset(uintptr_t(field)) {} }; #ifdef DEBUG /* * |Unrooted| acts as an AutoAssertNoGC after it is initialized. It otherwise * acts like as a normal pointer of type T. */ template class Unrooted { public: Unrooted() : ptr_(UninitializedTag()) {} /* * |Unrooted| can be initialized from a convertible |Rooted| or * |Handle|. This is so that we can call AutoAssertNoGC methods that * take |Unrooted| parameters with a convertible rooted argument * without explicit unpacking. * * Note: Even though this allows implicit conversion to |Unrooted| * type, this is safe because Unrooted acts as an AutoAssertNoGC scope. */ template inline Unrooted(const Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); template Unrooted(const JS::Handle &root, typename mozilla::EnableIf::value, int>::Type dummy = 0) : ptr_(root.get()) { JS_ASSERT(ptr_ != UninitializedTag()); JS::EnterAssertNoGCScope(); } /* * |Unrooted| can initialize by copying from a convertible type * |Unrooted|. This enables usage such as: * * Unrooted base = js_NewBaseShape(cx); * Unrooted ubase = static_cast(ubase); */ template Unrooted(const Unrooted &other) /* Note: |static_cast| acquires other.ptr_ in DEBUG builds. */ : ptr_(static_cast(static_cast(other))) { if (ptr_ != UninitializedTag()) JS::EnterAssertNoGCScope(); } Unrooted(const Unrooted &other) : ptr_(other.ptr_) { if (ptr_ != UninitializedTag()) JS::EnterAssertNoGCScope(); } Unrooted(const T &p) : ptr_(p) { JS_ASSERT(ptr_ != UninitializedTag()); JS::EnterAssertNoGCScope(); } Unrooted(const JS::NullPtr &) : ptr_(NULL) { JS::EnterAssertNoGCScope(); } ~Unrooted() { if (ptr_ != UninitializedTag()) JS::LeaveAssertNoGCScope(); } void drop() { if (ptr_ != UninitializedTag()) JS::LeaveAssertNoGCScope(); ptr_ = UninitializedTag(); } /* See notes for Unrooted::Unrooted(const T &) */ Unrooted &operator=(T other) { JS_ASSERT(other != UninitializedTag()); if (ptr_ == UninitializedTag()) JS::EnterAssertNoGCScope(); ptr_ = other; return *this; } Unrooted &operator=(Unrooted other) { JS_ASSERT(other.ptr_ != UninitializedTag()); if (ptr_ == UninitializedTag()) JS::EnterAssertNoGCScope(); ptr_ = other.ptr_; return *this; } operator T() const { return (ptr_ == UninitializedTag()) ? NULL : ptr_; } T *operator&() { return &ptr_; } const T operator->() const { JS_ASSERT(ptr_ != UninitializedTag()); return ptr_; } bool operator==(const T &other) { return ptr_ == other; } bool operator!=(const T &other) { return ptr_ != other; } private: /* * The after-initialization constraint is to handle the case: * * Unrooted foo = js_NewFoo(cx); * * In this case, C++ may run the default constructor, then call MaybeGC, * and finally call the assignment operator. We cannot handle this case by * simply checking if the pointer is NULL, since that would disable the * NoGCScope on assignment. Instead we tag the pointer when we should * disable the LeaveNoGCScope. */ static inline T UninitializedTag() { return reinterpret_cast(1); }; T ptr_; }; /* * This macro simplifies declaration of the required matching raw-pointer for * optimized builds and Unrooted template for debug builds. */ # define ForwardDeclare(type) \ class type; \ typedef Unrooted Unrooted##type; \ typedef type * Raw##type # define ForwardDeclareJS(type) \ class JS##type; \ namespace js { \ typedef js::Unrooted Unrooted##type; \ typedef JS##type * Raw##type; \ } \ class JS##type template T DropUnrooted(Unrooted &unrooted) { T rv = unrooted; unrooted.drop(); return rv; } template T DropUnrooted(T &unrooted) { T rv = unrooted; JS::PoisonPtr(&unrooted); return rv; } template <> inline RawId DropUnrooted(RawId &id) { return id; } #else /* NDEBUG */ /* In opt builds |UnrootedFoo| is a real |Foo*|. */ # define ForwardDeclare(type) \ class type; \ typedef type * Unrooted##type; \ typedef type * Raw##type # define ForwardDeclareJS(type) \ class JS##type; \ namespace js { \ typedef JS##type * Unrooted##type; \ typedef JS##type * Raw##type; \ } \ class JS##type template class Unrooted { private: Unrooted() MOZ_DELETE; Unrooted(const Unrooted &) MOZ_DELETE; ~Unrooted() MOZ_DELETE; }; template T DropUnrooted(T &unrooted) { return unrooted; } #endif /* DEBUG */ /* * By default, pointers should use the inheritance hierarchy to find their * ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that * Rooted may be used without the class definition being available. */ template struct RootKind { static ThingRootKind rootKind() { return T::rootKind(); } }; template struct RootMethods { static T *initial() { return NULL; } static ThingRootKind kind() { return RootKind::rootKind(); } static bool poisoned(T *v) { return IsPoisonedPtr(v); } }; /* * Local variable of type T whose value is always rooted. This is typically * used for local variables, or for non-rooted values being passed to a * function that requires a handle, e.g. Foo(Root(cx, x)). * * If you want to add additional methods to Rooted for a specific * specialization, define a RootedBase specialization containing them. */ template class Rooted : public RootedBase { void init(JSContext *cxArg) { #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) ContextFriendFields *cx = ContextFriendFields::get(cxArg); commonInit(cx->thingGCRooters); #endif } void init(JSRuntime *rtArg) { #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) PerThreadDataFriendFields *pt = PerThreadDataFriendFields::getMainThread(rtArg); commonInit(pt->thingGCRooters); #endif } void init(js::PerThreadData *ptArg) { #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) PerThreadDataFriendFields *pt = PerThreadDataFriendFields::get(ptArg); commonInit(pt->thingGCRooters); #endif } public: Rooted(JSRuntime *rt MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(RootMethods::initial()) #if defined(JSGC_ROOT_ANALYSIS) , scanned(false) #endif { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(rt); } Rooted(JSRuntime *rt, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) #if defined(JSGC_ROOT_ANALYSIS) , scanned(false) #endif { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(rt); } Rooted(JSContext *cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(RootMethods::initial()) #if defined(JSGC_ROOT_ANALYSIS) , scanned(false) #endif { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(cx); } Rooted(JSContext *cx, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) #if defined(JSGC_ROOT_ANALYSIS) , scanned(false) #endif { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(cx); } Rooted(js::PerThreadData *pt MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(RootMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(pt); } Rooted(js::PerThreadData *pt, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(pt); } template Rooted(JSContext *cx, const Unrooted &initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(static_cast(initial)) #if defined(JSGC_ROOT_ANALYSIS) , scanned(false) #endif { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(cx); } ~Rooted() { #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) JS_ASSERT(*stack == this); *stack = prev; #endif } #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) Rooted *previous() { return prev; } #endif operator T() const { return ptr; } T operator->() const { return ptr; } T *address() { return &ptr; } const T *address() const { return &ptr; } T &get() { return ptr; } const T &get() const { return ptr; } T &operator=(T value) { JS_ASSERT(!RootMethods::poisoned(value)); ptr = value; return ptr; } T &operator=(const Rooted &value) { ptr = value; return ptr; } private: void commonInit(Rooted **thingGCRooters) { #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) ThingRootKind kind = RootMethods::kind(); this->stack = reinterpret_cast**>(&thingGCRooters[kind]); this->prev = *stack; *stack = this; JS_ASSERT(!RootMethods::poisoned(ptr)); #endif } #if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING) Rooted **stack, *prev; #endif T ptr; MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER Rooted(const Rooted &) MOZ_DELETE; #if defined(JSGC_ROOT_ANALYSIS) public: /* Has the rooting analysis ever scanned this Rooted's stack location? */ bool scanned; #endif }; #if !(defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)) // Defined in vm/String.h. template <> class Rooted; #endif #ifdef DEBUG template template inline Unrooted::Unrooted(const Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy) : ptr_(root.get()) { JS_ASSERT(ptr_ != UninitializedTag()); JS::EnterAssertNoGCScope(); } #endif /* DEBUG */ typedef Rooted RootedObject; typedef Rooted RootedFunction; typedef Rooted RootedScript; typedef Rooted RootedString; typedef Rooted RootedId; typedef Rooted RootedValue; /* * Mark a stack location as a root for the rooting analysis, without actually * rooting it in release builds. This should only be used for stack locations * of GC things that cannot be relocated by a garbage collection, and that * are definitely reachable via another path. */ class SkipRoot { #if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) SkipRoot **stack, *prev; const uint8_t *start; const uint8_t *end; template void init(ContextFriendFields *cx, const T *ptr, size_t count) { this->stack = &cx->skipGCRooters; this->prev = *stack; *stack = this; this->start = (const uint8_t *) ptr; this->end = this->start + (sizeof(T) * count); } public: template SkipRoot(JSContext *cx, const T *ptr, size_t count = 1 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) { init(ContextFriendFields::get(cx), ptr, count); MOZ_GUARD_OBJECT_NOTIFIER_INIT; } ~SkipRoot() { JS_ASSERT(*stack == this); *stack = prev; } SkipRoot *previous() { return prev; } bool contains(const uint8_t *v, size_t len) { return v >= start && v + len <= end; } #else /* DEBUG && JSGC_ROOT_ANALYSIS */ public: template SkipRoot(JSContext *cx, const T *ptr, size_t count = 1 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; } #endif /* DEBUG && JSGC_ROOT_ANALYSIS */ MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER }; } /* namespace js */ namespace JS { template template inline Handle::Handle(js::Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle(MutableHandle &root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = reinterpret_cast(root.address()); } template template inline MutableHandle::MutableHandle(js::Rooted *root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = root->address(); } template template inline void MutableHandle::set(const js::Unrooted &v) { JS_ASSERT(!js::RootMethods::poisoned(v)); *ptr = static_cast(v); } /* * The scoped guard object AutoAssertNoGC forces the GC to assert if a GC is * attempted while the guard object is live. If you have a GC-unsafe operation * to perform, use this guard object to protect your operation. */ class AutoAssertNoGC { MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER public: AutoAssertNoGC(MOZ_GUARD_OBJECT_NOTIFIER_ONLY_PARAM) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; #ifdef DEBUG EnterAssertNoGCScope(); #endif } ~AutoAssertNoGC() { #ifdef DEBUG LeaveAssertNoGCScope(); #endif } }; /* * AssertCanGC will assert if it is called inside of an AutoAssertNoGC region. */ JS_ALWAYS_INLINE void AssertCanGC() { JS_ASSERT_IF(isGCEnabled(), !InNoGCScope()); } #if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) extern void CheckStackRoots(JSContext *cx); #endif JS_FRIEND_API(bool) NeedRelaxedRootChecks(); } /* namespace JS */ namespace js { /* * Hook for dynamic root analysis. Checks the native stack and poisons * references to GC things which have not been rooted. */ inline void MaybeCheckStackRoots(JSContext *cx, bool relax = true) { JS::AssertCanGC(); #if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) if (relax && NeedRelaxedRootChecks()) return; CheckStackRoots(cx); #endif } namespace gc { struct Cell; } /* namespace gc */ /* Base class for automatic read-only object rooting during compilation. */ class CompilerRootNode { protected: CompilerRootNode(js::gc::Cell *ptr) : next(NULL), ptr(ptr) {} public: void **address() { return (void **)&ptr; } public: CompilerRootNode *next; protected: js::gc::Cell *ptr; }; } /* namespace js */ ForwardDeclareJS(Script); ForwardDeclareJS(Function); #endif /* jsgc_root_h___ */