/* * Copyright (c) 2007-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include void b2CollideCircles( b2Manifold* manifold, const b2CircleShape* circleA, const b2Transform& xfA, const b2CircleShape* circleB, const b2Transform& xfB) { manifold->pointCount = 0; b2Vec2 pA = b2Mul(xfA, circleA->m_p); b2Vec2 pB = b2Mul(xfB, circleB->m_p); b2Vec2 d = pB - pA; float32 distSqr = b2Dot(d, d); float32 rA = circleA->m_radius, rB = circleB->m_radius; float32 radius = rA + rB; if (distSqr > radius * radius) { return; } manifold->type = b2Manifold::e_circles; manifold->localPoint = circleA->m_p; manifold->localNormal.SetZero(); manifold->pointCount = 1; manifold->points[0].localPoint = circleB->m_p; manifold->points[0].id.key = 0; } void b2CollidePolygonAndCircle( b2Manifold* manifold, const b2PolygonShape* polygonA, const b2Transform& xfA, const b2CircleShape* circleB, const b2Transform& xfB) { manifold->pointCount = 0; // Compute circle position in the frame of the polygon. b2Vec2 c = b2Mul(xfB, circleB->m_p); b2Vec2 cLocal = b2MulT(xfA, c); // Find the min separating edge. int32 normalIndex = 0; float32 separation = -b2_maxFloat; float32 radius = polygonA->m_radius + circleB->m_radius; int32 vertexCount = polygonA->m_vertexCount; const b2Vec2* vertices = polygonA->m_vertices; const b2Vec2* normals = polygonA->m_normals; for (int32 i = 0; i < vertexCount; ++i) { float32 s = b2Dot(normals[i], cLocal - vertices[i]); if (s > radius) { // Early out. return; } if (s > separation) { separation = s; normalIndex = i; } } // Vertices that subtend the incident face. int32 vertIndex1 = normalIndex; int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0; b2Vec2 v1 = vertices[vertIndex1]; b2Vec2 v2 = vertices[vertIndex2]; // If the center is inside the polygon ... if (separation < b2_epsilon) { manifold->pointCount = 1; manifold->type = b2Manifold::e_faceA; manifold->localNormal = normals[normalIndex]; manifold->localPoint = 0.5f * (v1 + v2); manifold->points[0].localPoint = circleB->m_p; manifold->points[0].id.key = 0; return; } // Compute barycentric coordinates float32 u1 = b2Dot(cLocal - v1, v2 - v1); float32 u2 = b2Dot(cLocal - v2, v1 - v2); if (u1 <= 0.0f) { if (b2DistanceSquared(cLocal, v1) > radius * radius) { return; } manifold->pointCount = 1; manifold->type = b2Manifold::e_faceA; manifold->localNormal = cLocal - v1; manifold->localNormal.Normalize(); manifold->localPoint = v1; manifold->points[0].localPoint = circleB->m_p; manifold->points[0].id.key = 0; } else if (u2 <= 0.0f) { if (b2DistanceSquared(cLocal, v2) > radius * radius) { return; } manifold->pointCount = 1; manifold->type = b2Manifold::e_faceA; manifold->localNormal = cLocal - v2; manifold->localNormal.Normalize(); manifold->localPoint = v2; manifold->points[0].localPoint = circleB->m_p; manifold->points[0].id.key = 0; } else { b2Vec2 faceCenter = 0.5f * (v1 + v2); float32 separation = b2Dot(cLocal - faceCenter, normals[vertIndex1]); if (separation > radius) { return; } manifold->pointCount = 1; manifold->type = b2Manifold::e_faceA; manifold->localNormal = normals[vertIndex1]; manifold->localPoint = faceCenter; manifold->points[0].localPoint = circleB->m_p; manifold->points[0].id.key = 0; } }