/* * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Point-to-point constraint // C = p2 - p1 // Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) // J = [-I -r1_skew I r2_skew ] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) // Motor constraint // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // K = invI1 + invI2 void b2RevoluteJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor) { bodyA = b1; bodyB = b2; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); } b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) : b2Joint(def) { m_localAnchor1 = def->localAnchorA; m_localAnchor2 = def->localAnchorB; m_referenceAngle = def->referenceAngle; m_impulse.SetZero(); m_motorImpulse = 0.0f; m_lowerAngle = def->lowerAngle; m_upperAngle = def->upperAngle; m_maxMotorTorque = def->maxMotorTorque; m_motorSpeed = def->motorSpeed; m_enableLimit = def->enableLimit; m_enableMotor = def->enableMotor; m_limitState = e_inactiveLimit; } void b2RevoluteJoint::InitVelocityConstraints(const b2TimeStep& step) { b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; if (m_enableMotor || m_enableLimit) { // You cannot create a rotation limit between bodies that // both have fixed rotation. b2Assert(b1->m_invI > 0.0f || b2->m_invI > 0.0f); } // Compute the effective mass matrix. b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ m1+r1y^2*i1+m2+r2y^2*i2, -r1y*i1*r1x-r2y*i2*r2x, -r1y*i1-r2y*i2] // [ -r1y*i1*r1x-r2y*i2*r2x, m1+r1x^2*i1+m2+r2x^2*i2, r1x*i1+r2x*i2] // [ -r1y*i1-r2y*i2, r1x*i1+r2x*i2, i1+i2] float32 m1 = b1->m_invMass, m2 = b2->m_invMass; float32 i1 = b1->m_invI, i2 = b2->m_invI; m_mass.col1.x = m1 + m2 + r1.y * r1.y * i1 + r2.y * r2.y * i2; m_mass.col2.x = -r1.y * r1.x * i1 - r2.y * r2.x * i2; m_mass.col3.x = -r1.y * i1 - r2.y * i2; m_mass.col1.y = m_mass.col2.x; m_mass.col2.y = m1 + m2 + r1.x * r1.x * i1 + r2.x * r2.x * i2; m_mass.col3.y = r1.x * i1 + r2.x * i2; m_mass.col1.z = m_mass.col3.x; m_mass.col2.z = m_mass.col3.y; m_mass.col3.z = i1 + i2; m_motorMass = i1 + i2; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } if (m_enableMotor == false) { m_motorImpulse = 0.0f; } if (m_enableLimit) { float32 jointAngle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) { m_limitState = e_equalLimits; } else if (jointAngle <= m_lowerAngle) { if (m_limitState != e_atLowerLimit) { m_impulse.z = 0.0f; } m_limitState = e_atLowerLimit; } else if (jointAngle >= m_upperAngle) { if (m_limitState != e_atUpperLimit) { m_impulse.z = 0.0f; } m_limitState = e_atUpperLimit; } else { m_limitState = e_inactiveLimit; m_impulse.z = 0.0f; } } else { m_limitState = e_inactiveLimit; } if (step.warmStarting) { // Scale impulses to support a variable time step. m_impulse *= step.dtRatio; m_motorImpulse *= step.dtRatio; b2Vec2 P(m_impulse.x, m_impulse.y); b1->m_linearVelocity -= m1 * P; b1->m_angularVelocity -= i1 * (b2Cross(r1, P) + m_motorImpulse + m_impulse.z); b2->m_linearVelocity += m2 * P; b2->m_angularVelocity += i2 * (b2Cross(r2, P) + m_motorImpulse + m_impulse.z); } else { m_impulse.SetZero(); m_motorImpulse = 0.0f; } } void b2RevoluteJoint::SolveVelocityConstraints(const b2TimeStep& step) { b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; b2Vec2 v1 = b1->m_linearVelocity; float32 w1 = b1->m_angularVelocity; b2Vec2 v2 = b2->m_linearVelocity; float32 w2 = b2->m_angularVelocity; float32 m1 = b1->m_invMass, m2 = b2->m_invMass; float32 i1 = b1->m_invI, i2 = b2->m_invI; // Solve motor constraint. if (m_enableMotor && m_limitState != e_equalLimits) { float32 Cdot = w2 - w1 - m_motorSpeed; float32 impulse = m_motorMass * (-Cdot); float32 oldImpulse = m_motorImpulse; float32 maxImpulse = step.dt * m_maxMotorTorque; m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; w1 -= i1 * impulse; w2 += i2 * impulse; } // Solve limit constraint. if (m_enableLimit && m_limitState != e_inactiveLimit) { b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); // Solve point-to-point constraint b2Vec2 Cdot1 = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1); float32 Cdot2 = w2 - w1; b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); b2Vec3 impulse = m_mass.Solve33(-Cdot); if (m_limitState == e_equalLimits) { m_impulse += impulse; } else if (m_limitState == e_atLowerLimit) { float32 newImpulse = m_impulse.z + impulse.z; if (newImpulse < 0.0f) { b2Vec2 reduced = m_mass.Solve22(-Cdot1); impulse.x = reduced.x; impulse.y = reduced.y; impulse.z = -m_impulse.z; m_impulse.x += reduced.x; m_impulse.y += reduced.y; m_impulse.z = 0.0f; } } else if (m_limitState == e_atUpperLimit) { float32 newImpulse = m_impulse.z + impulse.z; if (newImpulse > 0.0f) { b2Vec2 reduced = m_mass.Solve22(-Cdot1); impulse.x = reduced.x; impulse.y = reduced.y; impulse.z = -m_impulse.z; m_impulse.x += reduced.x; m_impulse.y += reduced.y; m_impulse.z = 0.0f; } } b2Vec2 P(impulse.x, impulse.y); v1 -= m1 * P; w1 -= i1 * (b2Cross(r1, P) + impulse.z); v2 += m2 * P; w2 += i2 * (b2Cross(r2, P) + impulse.z); } else { b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); // Solve point-to-point constraint b2Vec2 Cdot = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1); b2Vec2 impulse = m_mass.Solve22(-Cdot); m_impulse.x += impulse.x; m_impulse.y += impulse.y; v1 -= m1 * impulse; w1 -= i1 * b2Cross(r1, impulse); v2 += m2 * impulse; w2 += i2 * b2Cross(r2, impulse); } b1->m_linearVelocity = v1; b1->m_angularVelocity = w1; b2->m_linearVelocity = v2; b2->m_angularVelocity = w2; } bool b2RevoluteJoint::SolvePositionConstraints(float32 baumgarte) { // TODO_ERIN block solve with limit. B2_NOT_USED(baumgarte); b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; float32 angularError = 0.0f; float32 positionError = 0.0f; // Solve angular limit constraint. if (m_enableLimit && m_limitState != e_inactiveLimit) { float32 angle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; float32 limitImpulse = 0.0f; if (m_limitState == e_equalLimits) { // Prevent large angular corrections float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; angularError = b2Abs(C); } else if (m_limitState == e_atLowerLimit) { float32 C = angle - m_lowerAngle; angularError = -C; // Prevent large angular corrections and allow some slop. C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); limitImpulse = -m_motorMass * C; } else if (m_limitState == e_atUpperLimit) { float32 C = angle - m_upperAngle; angularError = C; // Prevent large angular corrections and allow some slop. C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; } b1->m_sweep.a -= b1->m_invI * limitImpulse; b2->m_sweep.a += b2->m_invI * limitImpulse; b1->SynchronizeTransform(); b2->SynchronizeTransform(); } // Solve point-to-point constraint. { b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter()); b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter()); b2Vec2 C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; positionError = C.Length(); float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass; float32 invI1 = b1->m_invI, invI2 = b2->m_invI; // Handle large detachment. const float32 k_allowedStretch = 10.0f * b2_linearSlop; if (C.LengthSquared() > k_allowedStretch * k_allowedStretch) { // Use a particle solution (no rotation). b2Vec2 u = C; u.Normalize(); float32 m = invMass1 + invMass2; if (m > 0.0f) { m = 1.0f / m; } b2Vec2 impulse = m * (-C); const float32 k_beta = 0.5f; b1->m_sweep.c -= k_beta * invMass1 * impulse; b2->m_sweep.c += k_beta * invMass2 * impulse; C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1; } b2Mat22 K1; K1.col1.x = invMass1 + invMass2; K1.col2.x = 0.0f; K1.col1.y = 0.0f; K1.col2.y = invMass1 + invMass2; b2Mat22 K2; K2.col1.x = invI1 * r1.y * r1.y; K2.col2.x = -invI1 * r1.x * r1.y; K2.col1.y = -invI1 * r1.x * r1.y; K2.col2.y = invI1 * r1.x * r1.x; b2Mat22 K3; K3.col1.x = invI2 * r2.y * r2.y; K3.col2.x = -invI2 * r2.x * r2.y; K3.col1.y = -invI2 * r2.x * r2.y; K3.col2.y = invI2 * r2.x * r2.x; b2Mat22 K = K1 + K2 + K3; b2Vec2 impulse = K.Solve(-C); b1->m_sweep.c -= b1->m_invMass * impulse; b1->m_sweep.a -= b1->m_invI * b2Cross(r1, impulse); b2->m_sweep.c += b2->m_invMass * impulse; b2->m_sweep.a += b2->m_invI * b2Cross(r2, impulse); b1->SynchronizeTransform(); b2->SynchronizeTransform(); } return positionError <= b2_linearSlop && angularError <= b2_angularSlop; } b2Vec2 b2RevoluteJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchor1); } b2Vec2 b2RevoluteJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchor2); } b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 P(m_impulse.x, m_impulse.y); return inv_dt * P; } float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * m_impulse.z; } float32 b2RevoluteJoint::GetJointAngle() const { b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; return b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle; } float32 b2RevoluteJoint::GetJointSpeed() const { b2Body* b1 = m_bodyA; b2Body* b2 = m_bodyB; return b2->m_angularVelocity - b1->m_angularVelocity; } bool b2RevoluteJoint::IsMotorEnabled() const { return m_enableMotor; } void b2RevoluteJoint::EnableMotor(bool flag) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableMotor = flag; } float32 b2RevoluteJoint::GetMotorTorque() const { return m_motorImpulse; } void b2RevoluteJoint::SetMotorSpeed(float32 speed) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_motorSpeed = speed; } void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_maxMotorTorque = torque; } bool b2RevoluteJoint::IsLimitEnabled() const { return m_enableLimit; } void b2RevoluteJoint::EnableLimit(bool flag) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableLimit = flag; } float32 b2RevoluteJoint::GetLowerLimit() const { return m_lowerAngle; } float32 b2RevoluteJoint::GetUpperLimit() const { return m_upperAngle; } void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) { b2Assert(lower <= upper); m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_lowerAngle = lower; m_upperAngle = upper; }