/* * Copyright 2021 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FLATBUFFERS_FLATBUFFER_BUILDER_H_ #define FLATBUFFERS_FLATBUFFER_BUILDER_H_ #include #include #include "flatbuffers/allocator.h" #include "flatbuffers/array.h" #include "flatbuffers/base.h" #include "flatbuffers/buffer_ref.h" #include "flatbuffers/default_allocator.h" #include "flatbuffers/detached_buffer.h" #include "flatbuffers/stl_emulation.h" #include "flatbuffers/string.h" #include "flatbuffers/struct.h" #include "flatbuffers/table.h" #include "flatbuffers/vector.h" #include "flatbuffers/vector_downward.h" #include "flatbuffers/verifier.h" namespace flatbuffers { // Converts a Field ID to a virtual table offset. inline voffset_t FieldIndexToOffset(voffset_t field_id) { // Should correspond to what EndTable() below builds up. const int fixed_fields = 2; // Vtable size and Object Size. return static_cast((field_id + fixed_fields) * sizeof(voffset_t)); } template> const T *data(const std::vector &v) { // Eventually the returned pointer gets passed down to memcpy, so // we need it to be non-null to avoid undefined behavior. static uint8_t t; return v.empty() ? reinterpret_cast(&t) : &v.front(); } template> T *data(std::vector &v) { // Eventually the returned pointer gets passed down to memcpy, so // we need it to be non-null to avoid undefined behavior. static uint8_t t; return v.empty() ? reinterpret_cast(&t) : &v.front(); } /// @addtogroup flatbuffers_cpp_api /// @{ /// @class FlatBufferBuilder /// @brief Helper class to hold data needed in creation of a FlatBuffer. /// To serialize data, you typically call one of the `Create*()` functions in /// the generated code, which in turn call a sequence of `StartTable`/ /// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/ /// `CreateVector` functions. Do this is depth-first order to build up a tree to /// the root. `Finish()` wraps up the buffer ready for transport. class FlatBufferBuilder { public: /// @brief Default constructor for FlatBufferBuilder. /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults /// to `1024`. /// @param[in] allocator An `Allocator` to use. If null will use /// `DefaultAllocator`. /// @param[in] own_allocator Whether the builder/vector should own the /// allocator. Defaults to / `false`. /// @param[in] buffer_minalign Force the buffer to be aligned to the given /// minimum alignment upon reallocation. Only needed if you intend to store /// types with custom alignment AND you wish to read the buffer in-place /// directly after creation. explicit FlatBufferBuilder( size_t initial_size = 1024, Allocator *allocator = nullptr, bool own_allocator = false, size_t buffer_minalign = AlignOf()) : buf_(initial_size, allocator, own_allocator, buffer_minalign), num_field_loc(0), max_voffset_(0), nested(false), finished(false), minalign_(1), force_defaults_(false), dedup_vtables_(true), string_pool(nullptr) { EndianCheck(); } /// @brief Move constructor for FlatBufferBuilder. FlatBufferBuilder(FlatBufferBuilder &&other) : buf_(1024, nullptr, false, AlignOf()), num_field_loc(0), max_voffset_(0), nested(false), finished(false), minalign_(1), force_defaults_(false), dedup_vtables_(true), string_pool(nullptr) { EndianCheck(); // Default construct and swap idiom. // Lack of delegating constructors in vs2010 makes it more verbose than // needed. Swap(other); } /// @brief Move assignment operator for FlatBufferBuilder. FlatBufferBuilder &operator=(FlatBufferBuilder &&other) { // Move construct a temporary and swap idiom FlatBufferBuilder temp(std::move(other)); Swap(temp); return *this; } void Swap(FlatBufferBuilder &other) { using std::swap; buf_.swap(other.buf_); swap(num_field_loc, other.num_field_loc); swap(max_voffset_, other.max_voffset_); swap(nested, other.nested); swap(finished, other.finished); swap(minalign_, other.minalign_); swap(force_defaults_, other.force_defaults_); swap(dedup_vtables_, other.dedup_vtables_); swap(string_pool, other.string_pool); } ~FlatBufferBuilder() { if (string_pool) delete string_pool; } void Reset() { Clear(); // clear builder state buf_.reset(); // deallocate buffer } /// @brief Reset all the state in this FlatBufferBuilder so it can be reused /// to construct another buffer. void Clear() { ClearOffsets(); buf_.clear(); nested = false; finished = false; minalign_ = 1; if (string_pool) string_pool->clear(); } /// @brief The current size of the serialized buffer, counting from the end. /// @return Returns an `uoffset_t` with the current size of the buffer. uoffset_t GetSize() const { return buf_.size(); } /// @brief Get the serialized buffer (after you call `Finish()`). /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the /// buffer. uint8_t *GetBufferPointer() const { Finished(); return buf_.data(); } /// @brief Get the serialized buffer (after you call `Finish()`) as a span. /// @return Returns a constructed flatbuffers::span that is a view over the /// FlatBuffer data inside the buffer. flatbuffers::span GetBufferSpan() const { Finished(); return flatbuffers::span(buf_.data(), buf_.size()); } /// @brief Get a pointer to an unfinished buffer. /// @return Returns a `uint8_t` pointer to the unfinished buffer. uint8_t *GetCurrentBufferPointer() const { return buf_.data(); } /// @brief Get the released pointer to the serialized buffer. /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards! /// @return A `FlatBuffer` that owns the buffer and its allocator and /// behaves similar to a `unique_ptr` with a deleter. FLATBUFFERS_ATTRIBUTE([[deprecated("use Release() instead")]]) DetachedBuffer ReleaseBufferPointer() { Finished(); return buf_.release(); } /// @brief Get the released DetachedBuffer. /// @return A `DetachedBuffer` that owns the buffer and its allocator. DetachedBuffer Release() { Finished(); return buf_.release(); } /// @brief Get the released pointer to the serialized buffer. /// @param size The size of the memory block containing /// the serialized `FlatBuffer`. /// @param offset The offset from the released pointer where the finished /// `FlatBuffer` starts. /// @return A raw pointer to the start of the memory block containing /// the serialized `FlatBuffer`. /// @remark If the allocator is owned, it gets deleted when the destructor is /// called.. uint8_t *ReleaseRaw(size_t &size, size_t &offset) { Finished(); return buf_.release_raw(size, offset); } /// @brief get the minimum alignment this buffer needs to be accessed /// properly. This is only known once all elements have been written (after /// you call Finish()). You can use this information if you need to embed /// a FlatBuffer in some other buffer, such that you can later read it /// without first having to copy it into its own buffer. size_t GetBufferMinAlignment() const { Finished(); return minalign_; } /// @cond FLATBUFFERS_INTERNAL void Finished() const { // If you get this assert, you're attempting to get access a buffer // which hasn't been finished yet. Be sure to call // FlatBufferBuilder::Finish with your root table. // If you really need to access an unfinished buffer, call // GetCurrentBufferPointer instead. FLATBUFFERS_ASSERT(finished); } /// @endcond /// @brief In order to save space, fields that are set to their default value /// don't get serialized into the buffer. /// @param[in] fd When set to `true`, always serializes default values that /// are set. Optional fields which are not set explicitly, will still not be /// serialized. void ForceDefaults(bool fd) { force_defaults_ = fd; } /// @brief By default vtables are deduped in order to save space. /// @param[in] dedup When set to `true`, dedup vtables. void DedupVtables(bool dedup) { dedup_vtables_ = dedup; } /// @cond FLATBUFFERS_INTERNAL void Pad(size_t num_bytes) { buf_.fill(num_bytes); } void TrackMinAlign(size_t elem_size) { if (elem_size > minalign_) minalign_ = elem_size; } void Align(size_t elem_size) { TrackMinAlign(elem_size); buf_.fill(PaddingBytes(buf_.size(), elem_size)); } void PushFlatBuffer(const uint8_t *bytes, size_t size) { PushBytes(bytes, size); finished = true; } void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); } void PopBytes(size_t amount) { buf_.pop(amount); } template void AssertScalarT() { // The code assumes power of 2 sizes and endian-swap-ability. static_assert(flatbuffers::is_scalar::value, "T must be a scalar type"); } // Write a single aligned scalar to the buffer template uoffset_t PushElement(T element) { AssertScalarT(); Align(sizeof(T)); buf_.push_small(EndianScalar(element)); return GetSize(); } template uoffset_t PushElement(Offset off) { // Special case for offsets: see ReferTo below. return PushElement(ReferTo(off.o)); } // When writing fields, we track where they are, so we can create correct // vtables later. void TrackField(voffset_t field, uoffset_t off) { FieldLoc fl = { off, field }; buf_.scratch_push_small(fl); num_field_loc++; if (field > max_voffset_) { max_voffset_ = field; } } // Like PushElement, but additionally tracks the field this represents. template void AddElement(voffset_t field, T e, T def) { // We don't serialize values equal to the default. if (IsTheSameAs(e, def) && !force_defaults_) return; TrackField(field, PushElement(e)); } template void AddElement(voffset_t field, T e) { TrackField(field, PushElement(e)); } template void AddOffset(voffset_t field, Offset off) { if (off.IsNull()) return; // Don't store. AddElement(field, ReferTo(off.o), static_cast(0)); } template void AddStruct(voffset_t field, const T *structptr) { if (!structptr) return; // Default, don't store. Align(AlignOf()); buf_.push_small(*structptr); TrackField(field, GetSize()); } void AddStructOffset(voffset_t field, uoffset_t off) { TrackField(field, off); } // Offsets initially are relative to the end of the buffer (downwards). // This function converts them to be relative to the current location // in the buffer (when stored here), pointing upwards. uoffset_t ReferTo(uoffset_t off) { // Align to ensure GetSize() below is correct. Align(sizeof(uoffset_t)); // Offset must refer to something already in buffer. const uoffset_t size = GetSize(); FLATBUFFERS_ASSERT(off && off <= size); return size - off + static_cast(sizeof(uoffset_t)); } void NotNested() { // If you hit this, you're trying to construct a Table/Vector/String // during the construction of its parent table (between the MyTableBuilder // and table.Finish(). // Move the creation of these sub-objects to above the MyTableBuilder to // not get this assert. // Ignoring this assert may appear to work in simple cases, but the reason // it is here is that storing objects in-line may cause vtable offsets // to not fit anymore. It also leads to vtable duplication. FLATBUFFERS_ASSERT(!nested); // If you hit this, fields were added outside the scope of a table. FLATBUFFERS_ASSERT(!num_field_loc); } // From generated code (or from the parser), we call StartTable/EndTable // with a sequence of AddElement calls in between. uoffset_t StartTable() { NotNested(); nested = true; return GetSize(); } // This finishes one serialized object by generating the vtable if it's a // table, comparing it against existing vtables, and writing the // resulting vtable offset. uoffset_t EndTable(uoffset_t start) { // If you get this assert, a corresponding StartTable wasn't called. FLATBUFFERS_ASSERT(nested); // Write the vtable offset, which is the start of any Table. // We fill its value later. auto vtableoffsetloc = PushElement(0); // Write a vtable, which consists entirely of voffset_t elements. // It starts with the number of offsets, followed by a type id, followed // by the offsets themselves. In reverse: // Include space for the last offset and ensure empty tables have a // minimum size. max_voffset_ = (std::max)(static_cast(max_voffset_ + sizeof(voffset_t)), FieldIndexToOffset(0)); buf_.fill_big(max_voffset_); auto table_object_size = vtableoffsetloc - start; // Vtable use 16bit offsets. FLATBUFFERS_ASSERT(table_object_size < 0x10000); WriteScalar(buf_.data() + sizeof(voffset_t), static_cast(table_object_size)); WriteScalar(buf_.data(), max_voffset_); // Write the offsets into the table for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc); it < buf_.scratch_end(); it += sizeof(FieldLoc)) { auto field_location = reinterpret_cast(it); auto pos = static_cast(vtableoffsetloc - field_location->off); // If this asserts, it means you've set a field twice. FLATBUFFERS_ASSERT( !ReadScalar(buf_.data() + field_location->id)); WriteScalar(buf_.data() + field_location->id, pos); } ClearOffsets(); auto vt1 = reinterpret_cast(buf_.data()); auto vt1_size = ReadScalar(vt1); auto vt_use = GetSize(); // See if we already have generated a vtable with this exact same // layout before. If so, make it point to the old one, remove this one. if (dedup_vtables_) { for (auto it = buf_.scratch_data(); it < buf_.scratch_end(); it += sizeof(uoffset_t)) { auto vt_offset_ptr = reinterpret_cast(it); auto vt2 = reinterpret_cast(buf_.data_at(*vt_offset_ptr)); auto vt2_size = ReadScalar(vt2); if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue; vt_use = *vt_offset_ptr; buf_.pop(GetSize() - vtableoffsetloc); break; } } // If this is a new vtable, remember it. if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); } // Fill the vtable offset we created above. // The offset points from the beginning of the object to where the // vtable is stored. // Offsets default direction is downward in memory for future format // flexibility (storing all vtables at the start of the file). WriteScalar(buf_.data_at(vtableoffsetloc), static_cast(vt_use) - static_cast(vtableoffsetloc)); nested = false; return vtableoffsetloc; } FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]]) uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) { return EndTable(start); } // This checks a required field has been set in a given table that has // just been constructed. template void Required(Offset table, voffset_t field); uoffset_t StartStruct(size_t alignment) { Align(alignment); return GetSize(); } uoffset_t EndStruct() { return GetSize(); } void ClearOffsets() { buf_.scratch_pop(num_field_loc * sizeof(FieldLoc)); num_field_loc = 0; max_voffset_ = 0; } // Aligns such that when "len" bytes are written, an object can be written // after it with "alignment" without padding. void PreAlign(size_t len, size_t alignment) { if (len == 0) return; TrackMinAlign(alignment); buf_.fill(PaddingBytes(GetSize() + len, alignment)); } template void PreAlign(size_t len) { AssertScalarT(); PreAlign(len, sizeof(T)); } /// @endcond /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str, size_t len) { NotNested(); PreAlign(len + 1); // Always 0-terminated. buf_.fill(1); PushBytes(reinterpret_cast(str), len); PushElement(static_cast(len)); return Offset(GetSize()); } /// @brief Store a string in the buffer, which is null-terminated. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str) { return CreateString(str, strlen(str)); } /// @brief Store a string in the buffer, which is null-terminated. /// @param[in] str A char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(char *str) { return CreateString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const std::string &str) { return CreateString(str.c_str(), str.length()); } // clang-format off #ifdef FLATBUFFERS_HAS_STRING_VIEW /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const string_view to copy in to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(flatbuffers::string_view str) { return CreateString(str.data(), str.size()); } #endif // FLATBUFFERS_HAS_STRING_VIEW // clang-format on /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateString(const String *str) { return str ? CreateString(str->c_str(), str->size()) : 0; } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const reference to a std::string like type with support /// of T::c_str() and T::length() to store in the buffer. /// @return Returns the offset in the buffer where the string starts. template Offset CreateString(const T &str) { return CreateString(str.c_str(), str.length()); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. This uses a map /// stored on the heap, but only stores the numerical offsets. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str, size_t len) { FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK); if (!string_pool) string_pool = new StringOffsetMap(StringOffsetCompare(buf_)); auto size_before_string = buf_.size(); // Must first serialize the string, since the set is all offsets into // buffer. auto off = CreateString(str, len); auto it = string_pool->find(off); // If it exists we reuse existing serialized data! if (it != string_pool->end()) { // We can remove the string we serialized. buf_.pop(buf_.size() - size_before_string); return *it; } // Record this string for future use. string_pool->insert(off); return off; } #ifdef FLATBUFFERS_HAS_STRING_VIEW /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. This uses a map /// stored on the heap, but only stores the numerical offsets. /// @param[in] str A const std::string_view to store in the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateSharedString(const flatbuffers::string_view str) { return CreateSharedString(str.data(), str.size()); } #else /// @brief Store a string in the buffer, which null-terminated. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. This uses a map /// stored on the heap, but only stores the numerical offsets. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str) { return CreateSharedString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. This uses a map /// stored on the heap, but only stores the numerical offsets. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const std::string &str) { return CreateSharedString(str.c_str(), str.length()); } #endif /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. This uses a map /// stored on the heap, but only stores the numerical offsets. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateSharedString(const String *str) { return str ? CreateSharedString(str->c_str(), str->size()) : 0; } /// @cond FLATBUFFERS_INTERNAL uoffset_t EndVector(size_t len) { FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector. nested = false; return PushElement(static_cast(len)); } void StartVector(size_t len, size_t elemsize) { NotNested(); nested = true; PreAlign(len * elemsize); PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t. } // Call this right before StartVector/CreateVector if you want to force the // alignment to be something different than what the element size would // normally dictate. // This is useful when storing a nested_flatbuffer in a vector of bytes, // or when storing SIMD floats, etc. void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) { if (len == 0) return; FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment)); PreAlign(len * elemsize, alignment); } // Similar to ForceVectorAlignment but for String fields. void ForceStringAlignment(size_t len, size_t alignment) { if (len == 0) return; FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment)); PreAlign((len + 1) * sizeof(char), alignment); } /// @endcond /// @brief Serialize an array into a FlatBuffer `vector`. /// @tparam T The data type of the array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const T *v, size_t len) { // If this assert hits, you're specifying a template argument that is // causing the wrong overload to be selected, remove it. AssertScalarT(); StartVector(len, sizeof(T)); if (len == 0) { return Offset>(EndVector(len)); } // clang-format off #if FLATBUFFERS_LITTLEENDIAN PushBytes(reinterpret_cast(v), len * sizeof(T)); #else if (sizeof(T) == 1) { PushBytes(reinterpret_cast(v), len); } else { for (auto i = len; i > 0; ) { PushElement(v[--i]); } } #endif // clang-format on return Offset>(EndVector(len)); } /// @brief Serialize an array like object into a FlatBuffer `vector`. /// @tparam T The data type of the array elements. /// @tparam C The type of the array. /// @param[in] array A reference to an array like object of type `T` to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const C &array) { return CreateVector(array.data(), array.size()); } /// @brief Serialize an initializer list into a FlatBuffer `vector`. /// @tparam T The data type of the initializer list elements. /// @param[in] v The value of the initializer list. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(std::initializer_list v) { return CreateVector(v.begin(), v.size()); } template Offset>> CreateVector(const Offset *v, size_t len) { StartVector(len, sizeof(Offset)); for (auto i = len; i > 0;) { PushElement(v[--i]); } return Offset>>(EndVector(len)); } /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` elements. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVector(const std::vector &v) { return CreateVector(data(v), v.size()); } // vector may be implemented using a bit-set, so we can't access it as // an array. Instead, read elements manually. // Background: https://isocpp.org/blog/2012/11/on-vectorbool Offset> CreateVector(const std::vector &v) { StartVector(v.size(), sizeof(uint8_t)); for (auto i = v.size(); i > 0;) { PushElement(static_cast(v[--i])); } return Offset>(EndVector(v.size())); } /// @brief Serialize values returned by a function into a FlatBuffer `vector`. /// This is a convenience function that takes care of iteration for you. /// @tparam T The data type of the `std::vector` elements. /// @param f A function that takes the current iteration 0..vector_size-1 and /// returns any type that you can construct a FlatBuffers vector out of. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(size_t vector_size, const std::function &f) { FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK); std::vector elems(vector_size); for (size_t i = 0; i < vector_size; i++) elems[i] = f(i); return CreateVector(elems); } /// @brief Serialize values returned by a function into a FlatBuffer `vector`. /// This is a convenience function that takes care of iteration for you. This /// uses a vector stored on the heap to store the intermediate results of the /// iteration. /// @tparam T The data type of the `std::vector` elements. /// @param f A function that takes the current iteration 0..vector_size-1, /// and the state parameter returning any type that you can construct a /// FlatBuffers vector out of. /// @param state State passed to f. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(size_t vector_size, F f, S *state) { FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK); std::vector elems(vector_size); for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state); return CreateVector(elems); } /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// whereas StringType is any type that is accepted by the CreateString() /// overloads. /// This is a convenience function for a common case. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset>> CreateVectorOfStrings( const std::vector &v) { return CreateVectorOfStrings(v.cbegin(), v.cend()); } /// @brief Serialize a collection of Strings into a FlatBuffer `vector`. /// This is a convenience function for a common case. /// @param begin The beginning iterator of the collection /// @param end The ending iterator of the collection /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfStrings(It begin, It end) { auto size = std::distance(begin, end); auto scratch_buffer_usage = size * sizeof(Offset); // If there is not enough space to store the offsets, there definitely won't // be enough space to store all the strings. So ensuring space for the // scratch region is OK, for if it fails, it would have failed later. buf_.ensure_space(scratch_buffer_usage); for (auto it = begin; it != end; ++it) { buf_.scratch_push_small(CreateString(*it)); } StartVector(size, sizeof(Offset)); for (auto i = 1; i <= size; i++) { // Note we re-evaluate the buf location each iteration to account for any // underlying buffer resizing that may occur. PushElement(*reinterpret_cast *>( buf_.scratch_end() - i * sizeof(Offset))); } buf_.scratch_pop(scratch_buffer_usage); return Offset>>(EndVector(size)); } /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfStructs(const T *v, size_t len) { StartVector(len * sizeof(T) / AlignOf(), AlignOf()); if (len > 0) { PushBytes(reinterpret_cast(v), sizeof(T) * len); } return Offset>(EndVector(len)); } /// @brief Serialize an array of native structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @tparam S The data type of the native struct array elements. /// @param[in] v A pointer to the array of type `S` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @param[in] pack_func Pointer to a function to convert the native struct /// to the FlatBuffer struct. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfNativeStructs( const S *v, size_t len, T (*const pack_func)(const S &)) { FLATBUFFERS_ASSERT(pack_func); auto structs = StartVectorOfStructs(len); for (size_t i = 0; i < len; i++) { structs[i] = pack_func(v[i]); } return EndVectorOfStructs(len); } /// @brief Serialize an array of native structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @tparam S The data type of the native struct array elements. /// @param[in] v A pointer to the array of type `S` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfNativeStructs(const S *v, size_t len) { extern T Pack(const S &); return CreateVectorOfNativeStructs(v, len, Pack); } /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] filler A function that takes the current iteration /// 0..vector_size-1 and a pointer to the struct that must be filled. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. /// This is mostly useful when flatbuffers are generated with mutation /// accessors. template Offset> CreateVectorOfStructs( size_t vector_size, const std::function &filler) { T *structs = StartVectorOfStructs(vector_size); for (size_t i = 0; i < vector_size; i++) { filler(i, structs); structs++; } return EndVectorOfStructs(vector_size); } /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] f A function that takes the current iteration 0..vector_size-1, /// a pointer to the struct that must be filled and the state argument. /// @param[in] state Arbitrary state to pass to f. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. /// This is mostly useful when flatbuffers are generated with mutation /// accessors. template Offset> CreateVectorOfStructs(size_t vector_size, F f, S *state) { T *structs = StartVectorOfStructs(vector_size); for (size_t i = 0; i < vector_size; i++) { f(i, structs, state); structs++; } return EndVectorOfStructs(vector_size); } /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVectorOfStructs( const std::vector &v) { return CreateVectorOfStructs(data(v), v.size()); } /// @brief Serialize a `std::vector` of native structs into a FlatBuffer /// `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @tparam S The data type of the `std::vector` native struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @param[in] pack_func Pointer to a function to convert the native struct /// to the FlatBuffer struct. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVectorOfNativeStructs( const std::vector &v, T (*const pack_func)(const S &)) { return CreateVectorOfNativeStructs(data(v), v.size(), pack_func); } /// @brief Serialize a `std::vector` of native structs into a FlatBuffer /// `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @tparam S The data type of the `std::vector` native struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVectorOfNativeStructs( const std::vector &v) { return CreateVectorOfNativeStructs(data(v), v.size()); } /// @cond FLATBUFFERS_INTERNAL template struct StructKeyComparator { bool operator()(const T &a, const T &b) const { return a.KeyCompareLessThan(&b); } }; /// @endcond /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector` /// in sorted order. /// @tparam T The data type of the `std::vector` struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVectorOfSortedStructs( std::vector *v) { return CreateVectorOfSortedStructs(data(*v), v->size()); } /// @brief Serialize a `std::vector` of native structs into a FlatBuffer /// `vector` in sorted order. /// @tparam T The data type of the `std::vector` struct elements. /// @tparam S The data type of the `std::vector` native struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset> CreateVectorOfSortedNativeStructs( std::vector *v) { return CreateVectorOfSortedNativeStructs(data(*v), v->size()); } /// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted /// order. /// @tparam T The data type of the struct array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedStructs(T *v, size_t len) { std::stable_sort(v, v + len, StructKeyComparator()); return CreateVectorOfStructs(v, len); } /// @brief Serialize an array of native structs into a FlatBuffer `vector` in /// sorted order. /// @tparam T The data type of the struct array elements. /// @tparam S The data type of the native struct array elements. /// @param[in] v A pointer to the array of type `S` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedNativeStructs(S *v, size_t len) { extern T Pack(const S &); auto structs = StartVectorOfStructs(len); for (size_t i = 0; i < len; i++) { structs[i] = Pack(v[i]); } std::stable_sort(structs, structs + len, StructKeyComparator()); return EndVectorOfStructs(len); } /// @cond FLATBUFFERS_INTERNAL template struct TableKeyComparator { TableKeyComparator(vector_downward &buf) : buf_(buf) {} TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {} bool operator()(const Offset &a, const Offset &b) const { auto table_a = reinterpret_cast(buf_.data_at(a.o)); auto table_b = reinterpret_cast(buf_.data_at(b.o)); return table_a->KeyCompareLessThan(table_b); } vector_downward &buf_; private: FLATBUFFERS_DELETE_FUNC( TableKeyComparator &operator=(const TableKeyComparator &other)); }; /// @endcond /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @param[in] len The number of elements to store in the `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfSortedTables(Offset *v, size_t len) { std::stable_sort(v, v + len, TableKeyComparator(buf_)); return CreateVector(v, len); } /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template> Offset>> CreateVectorOfSortedTables( std::vector, Alloc> *v) { return CreateVectorOfSortedTables(data(*v), v->size()); } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @param[in] len The number of elements to store in the `vector`. /// @param[in] elemsize The size of each element in the `vector`. /// @param[out] buf A pointer to a `uint8_t` pointer that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. uoffset_t CreateUninitializedVector(size_t len, size_t elemsize, uint8_t **buf) { NotNested(); StartVector(len, elemsize); buf_.make_space(len * elemsize); auto vec_start = GetSize(); auto vec_end = EndVector(len); *buf = buf_.data_at(vec_start); return vec_end; } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @tparam T The data type of the data that will be stored in the buffer /// as a `vector`. /// @param[in] len The number of elements to store in the `vector`. /// @param[out] buf A pointer to a pointer of type `T` that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. template Offset> CreateUninitializedVector(size_t len, T **buf) { AssertScalarT(); return CreateUninitializedVector(len, sizeof(T), reinterpret_cast(buf)); } template Offset> CreateUninitializedVectorOfStructs(size_t len, T **buf) { return CreateUninitializedVector(len, sizeof(T), reinterpret_cast(buf)); } // @brief Create a vector of scalar type T given as input a vector of scalar // type U, useful with e.g. pre "enum class" enums, or any existing scalar // data of the wrong type. template Offset> CreateVectorScalarCast(const U *v, size_t len) { AssertScalarT(); AssertScalarT(); StartVector(len, sizeof(T)); for (auto i = len; i > 0;) { PushElement(static_cast(v[--i])); } return Offset>(EndVector(len)); } /// @brief Write a struct by itself, typically to be part of a union. template Offset CreateStruct(const T &structobj) { NotNested(); Align(AlignOf()); buf_.push_small(structobj); return Offset(GetSize()); } /// @brief Finish serializing a buffer by writing the root offset. /// @param[in] file_identifier If a `file_identifier` is given, the buffer /// will be prefixed with a standard FlatBuffers file header. template void Finish(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, false); } /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the /// buffer following the size field). These buffers are NOT compatible /// with standard buffers created by Finish, i.e. you can't call GetRoot /// on them, you have to use GetSizePrefixedRoot instead. /// All >32 bit quantities in this buffer will be aligned when the whole /// size pre-fixed buffer is aligned. /// These kinds of buffers are useful for creating a stream of FlatBuffers. template void FinishSizePrefixed(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, true); } void SwapBufAllocator(FlatBufferBuilder &other) { buf_.swap_allocator(other.buf_); } /// @brief The length of a FlatBuffer file header. static const size_t kFileIdentifierLength = ::flatbuffers::kFileIdentifierLength; protected: // You shouldn't really be copying instances of this class. FlatBufferBuilder(const FlatBufferBuilder &); FlatBufferBuilder &operator=(const FlatBufferBuilder &); void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) { NotNested(); buf_.clear_scratch(); // This will cause the whole buffer to be aligned. PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0), minalign_); if (file_identifier) { FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength); PushBytes(reinterpret_cast(file_identifier), kFileIdentifierLength); } PushElement(ReferTo(root)); // Location of root. if (size_prefix) { PushElement(GetSize()); } finished = true; } struct FieldLoc { uoffset_t off; voffset_t id; }; vector_downward buf_; // Accumulating offsets of table members while it is being built. // We store these in the scratch pad of buf_, after the vtable offsets. uoffset_t num_field_loc; // Track how much of the vtable is in use, so we can output the most compact // possible vtable. voffset_t max_voffset_; // Ensure objects are not nested. bool nested; // Ensure the buffer is finished before it is being accessed. bool finished; size_t minalign_; bool force_defaults_; // Serialize values equal to their defaults anyway. bool dedup_vtables_; struct StringOffsetCompare { StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {} bool operator()(const Offset &a, const Offset &b) const { auto stra = reinterpret_cast(buf_->data_at(a.o)); auto strb = reinterpret_cast(buf_->data_at(b.o)); return StringLessThan(stra->data(), stra->size(), strb->data(), strb->size()); } const vector_downward *buf_; }; // For use with CreateSharedString. Instantiated on first use only. typedef std::set, StringOffsetCompare> StringOffsetMap; StringOffsetMap *string_pool; private: // Allocates space for a vector of structures. // Must be completed with EndVectorOfStructs(). template T *StartVectorOfStructs(size_t vector_size) { StartVector(vector_size * sizeof(T) / AlignOf(), AlignOf()); return reinterpret_cast(buf_.make_space(vector_size * sizeof(T))); } // End the vector of structures in the flatbuffers. // Vector should have previously be started with StartVectorOfStructs(). template Offset> EndVectorOfStructs(size_t vector_size) { return Offset>(EndVector(vector_size)); } }; /// @} /// Helpers to get a typed pointer to objects that are currently being built. /// @warning Creating new objects will lead to reallocations and invalidates /// the pointer! template T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return reinterpret_cast(fbb.GetCurrentBufferPointer() + fbb.GetSize() - offset.o); } template const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return GetMutableTemporaryPointer(fbb, offset); } template void FlatBufferBuilder::Required(Offset table, voffset_t field) { auto table_ptr = reinterpret_cast(buf_.data_at(table.o)); bool ok = table_ptr->GetOptionalFieldOffset(field) != 0; // If this fails, the caller will show what field needs to be set. FLATBUFFERS_ASSERT(ok); (void)ok; } } // namespace flatbuffers #endif // FLATBUFFERS_VECTOR_DOWNWARD_H_