/**************************************************************************** Copyright (c) 2018-2019 Xiamen Yaji Software Co., Ltd. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "renderer/backend/ProgramState.h" #include "renderer/backend/ProgramCache.h" #include "renderer/backend/Program.h" #include "renderer/backend/Texture.h" #include "renderer/backend/Types.h" #include "base/CCEventDispatcher.h" #include "base/CCEventType.h" #include "base/CCDirector.h" #include #ifdef CC_USE_METAL #include "glsl_optimizer.h" #endif CC_BACKEND_BEGIN namespace { #define MAT3_SIZE 36 #define MAT4X3_SIZE 48 #define VEC3_SIZE 12 #define VEC4_SIZE 16 #define BVEC3_SIZE 3 #define BVEC4_SIZE 4 #define IVEC3_SIZE 12 #define IVEC4_SIZE 16 void convertbVec3TobVec4(const bool* src, bool* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = false; } void convertiVec3ToiVec4(const int* src, int* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 0; } void convertVec3ToVec4(const float* src, float* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 0.0f; } void convertMat3ToMat4x3(const float* src, float* dst) { dst[3] = dst[7] = dst[11] = 0.0f; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[4] = src[3]; dst[5] = src[4]; dst[6] = src[5]; dst[8] = src[6]; dst[9] = src[7]; dst[10] = src[8]; } } //static field std::vector ProgramState::_customAutoBindingResolvers; TextureInfo::TextureInfo(const std::vector& _slots, const std::vector _textures) : slot(_slots) , textures(_textures) { retainTextures(); } TextureInfo::TextureInfo(const TextureInfo &other) : slot(other.slot) , textures(other.textures) #if CC_ENABLE_CACHE_TEXTURE_DATA , location(other.location) #endif { retainTextures(); } TextureInfo::~TextureInfo() { releaseTextures(); } void TextureInfo::retainTextures() { for (auto& texture : textures) CC_SAFE_RETAIN(texture); } void TextureInfo::releaseTextures() { for (auto& texture : textures) CC_SAFE_RELEASE(texture); } TextureInfo& TextureInfo::operator=(TextureInfo&& rhs) { if (this != &rhs) { slot = rhs.slot; rhs.retainTextures(); releaseTextures(); textures = rhs.textures; //release the textures before cleaning the vertor rhs.releaseTextures(); rhs.textures.clear(); #if CC_ENABLE_CACHE_TEXTURE_DATA location = rhs.location; #endif } return *this; } TextureInfo& TextureInfo::operator=(const TextureInfo& rhs) { if (this != &rhs) { slot = rhs.slot; textures = rhs.textures; retainTextures(); #if CC_ENABLE_CACHE_TEXTURE_DATA location = rhs.location; #endif } return *this; } ProgramState::ProgramState(ProgramType type) { _program = backend::ProgramCache::getInstance()->newBuiltinProgram(type); CCASSERT(_program, "Not built-in program type, please use ProgramState(const std::string& vertexShader, const std::string& fragmentShader) instead."); CC_SAFE_RETAIN(_program); init(); } ProgramState::ProgramState(const std::string& vertexShader, const std::string& fragmentShader) { _program = backend::ProgramCache::getInstance()->newProgram(vertexShader, fragmentShader); CC_SAFE_RETAIN(_program); init(); } void ProgramState::init() { _vertexUniformBufferSize = _program->getUniformBufferSize(ShaderStage::VERTEX); _vertexUniformBuffer = new char[_vertexUniformBufferSize]; memset(_vertexUniformBuffer, 0, _vertexUniformBufferSize); #ifdef CC_USE_METAL _fragmentUniformBufferSize = _program->getUniformBufferSize(ShaderStage::FRAGMENT); _fragmentUniformBuffer = new char[_fragmentUniformBufferSize]; memset(_fragmentUniformBuffer, 0, _fragmentUniformBufferSize); #endif #if CC_ENABLE_CACHE_TEXTURE_DATA _backToForegroundListener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom*){ this->resetUniforms(); }); Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_backToForegroundListener, -1); #endif } void ProgramState::resetUniforms() { #if CC_ENABLE_CACHE_TEXTURE_DATA if(_program == nullptr) return; const auto& uniformLocation = _program->getAllUniformsLocation(); for(const auto& uniform : uniformLocation) { auto location = uniform.second; auto mappedLocation = _program->getMappedLocation(location); //check if current location had been set before if(_vertexTextureInfos.find(location) != _vertexTextureInfos.end()) { _vertexTextureInfos[location].location = mappedLocation; } } #endif } ProgramState::ProgramState() { } ProgramState::~ProgramState() { CC_SAFE_RELEASE(_program); CC_SAFE_DELETE_ARRAY(_vertexUniformBuffer); CC_SAFE_DELETE_ARRAY(_fragmentUniformBuffer); #if CC_ENABLE_CACHE_TEXTURE_DATA Director::getInstance()->getEventDispatcher()->removeEventListener(_backToForegroundListener); #endif } ProgramState *ProgramState::clone() const { ProgramState *cp = new ProgramState(); cp->_program = _program; cp->_vertexUniformBufferSize = _vertexUniformBufferSize; cp->_fragmentUniformBufferSize = _fragmentUniformBufferSize; cp->_vertexTextureInfos = _vertexTextureInfos; cp->_fragmentTextureInfos = _fragmentTextureInfos; cp->_vertexUniformBuffer = new char[_vertexUniformBufferSize]; memcpy(cp->_vertexUniformBuffer, _vertexUniformBuffer, _vertexUniformBufferSize); cp->_vertexLayout = _vertexLayout; #ifdef CC_USE_METAL cp->_fragmentUniformBuffer = new char[_fragmentUniformBufferSize]; memcpy(cp->_fragmentUniformBuffer, _fragmentUniformBuffer, _fragmentUniformBufferSize); #endif CC_SAFE_RETAIN(cp->_program); return cp; } backend::UniformLocation ProgramState::getUniformLocation(backend::Uniform name) const { return _program->getUniformLocation(name); } backend::UniformLocation ProgramState::getUniformLocation(const std::string& uniform) const { return _program->getUniformLocation(uniform); } void ProgramState::setCallbackUniform(const backend::UniformLocation& uniformLocation,const UniformCallback& callback) { _callbackUniforms[uniformLocation] = callback; } void ProgramState::setUniform(const backend::UniformLocation& uniformLocation, const void* data, uint32_t size) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]); break; case backend::ShaderStage::FRAGMENT: setFragmentUniform(uniformLocation.location[1], data, size); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]); setFragmentUniform(uniformLocation.location[1], data, size); break; default: break; } } #ifdef CC_USE_METAL void ProgramState::convertAndCopyUniformData(const backend::UniformInfo& uniformInfo, const void* srcData, uint32_t srcSize, void* buffer) { auto basicType = static_cast(uniformInfo.type); char* convertedData = new char[uniformInfo.size]; memset(convertedData, 0, uniformInfo.size); int offset = 0; switch (basicType) { case kGlslTypeFloat: { if(uniformInfo.isMatrix) { for (int i=0; i= srcSize) break; convertMat3ToMat4x3((float*)srcData + offset, (float*)convertedData + i * MAT4X3_SIZE); offset += MAT3_SIZE; } } else { for (int i=0; i= srcSize) break; convertVec3ToVec4((float*)srcData +offset, (float*)convertedData + i * VEC4_SIZE); offset += VEC3_SIZE; } } break; } case kGlslTypeBool: { for (int i=0; i= srcSize) break; convertbVec3TobVec4((bool*)srcData + offset, (bool*)convertedData + i * BVEC4_SIZE); offset += BVEC3_SIZE; } break; } case kGlslTypeInt: { for (int i=0; i= srcSize) break; convertiVec3ToiVec4((int*)srcData + offset, (int*)convertedData + i * IVEC4_SIZE); offset += IVEC3_SIZE; } break; } default: CC_ASSERT(false); break; } memcpy((char*)buffer + uniformInfo.location, convertedData, uniformInfo.size); CC_SAFE_DELETE_ARRAY(convertedData); } #endif void ProgramState::setVertexUniform(int location, const void* data, uint32_t size, uint32_t offset) { if(location < 0) return; //float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout #ifdef CC_USE_METAL const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::VERTEX, location); if(uniformInfo.needConvert) { convertAndCopyUniformData(uniformInfo, data, size, _vertexUniformBuffer); } else { memcpy(_vertexUniformBuffer + location, data, size); } #else memcpy(_vertexUniformBuffer + offset, data, size); #endif } void ProgramState::setFragmentUniform(int location, const void* data, uint32_t size) { if(location < 0) return; //float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout #ifdef CC_USE_METAL const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::FRAGMENT, location); if(uniformInfo.needConvert) { convertAndCopyUniformData(uniformInfo, data, size, _fragmentUniformBuffer); } else { memcpy(_fragmentUniformBuffer + location, data, size); } #endif } void ProgramState::setTexture(const backend::UniformLocation& uniformLocation, uint32_t slot, backend::TextureBackend* texture) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setTexture(uniformLocation.location[0], slot, texture, _vertexTextureInfos); break; case backend::ShaderStage::FRAGMENT: setTexture(uniformLocation.location[1], slot, texture, _fragmentTextureInfos); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setTexture(uniformLocation.location[0], slot, texture, _vertexTextureInfos); setTexture(uniformLocation.location[1], slot, texture, _fragmentTextureInfos); break; default: break; } } void ProgramState::setTextureArray(const backend::UniformLocation& uniformLocation, const std::vector& slots, const std::vector textures) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setTextureArray(uniformLocation.location[0], slots, textures, _vertexTextureInfos); break; case backend::ShaderStage::FRAGMENT: setTextureArray(uniformLocation.location[1], slots, textures, _fragmentTextureInfos); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setTextureArray(uniformLocation.location[0], slots, textures, _vertexTextureInfos); setTextureArray(uniformLocation.location[1], slots, textures, _fragmentTextureInfos); break; default: break; } } void ProgramState::setTexture(int location, uint32_t slot, backend::TextureBackend* texture, std::unordered_map& textureInfo) { if(location < 0) return; TextureInfo& info = textureInfo[location]; info.slot = {slot}; info.textures = {texture}; info.retainTextures(); #if CC_ENABLE_CACHE_TEXTURE_DATA info.location = location; #endif } void ProgramState::setTextureArray(int location, const std::vector& slots, const std::vector textures, std::unordered_map& textureInfo) { assert(slots.size() == textures.size()); TextureInfo& info = textureInfo[location]; info.slot = slots; info.textures = textures; info.retainTextures(); #if CC_ENABLE_CACHE_TEXTURE_DATA info.location = location; #endif } void ProgramState::setParameterAutoBinding(const std::string &uniform, const std::string &autoBinding) { _autoBindings.emplace(uniform, autoBinding); applyAutoBinding(uniform, autoBinding); } void ProgramState::applyAutoBinding(const std::string &uniformName, const std::string &autoBinding) { bool resolved = false; for (const auto resolver : _customAutoBindingResolvers) { resolved = resolver->resolveAutoBinding(this, uniformName, autoBinding); if (resolved) break; } } ProgramState::AutoBindingResolver::AutoBindingResolver() { _customAutoBindingResolvers.emplace_back(this); } ProgramState::AutoBindingResolver::~AutoBindingResolver() { auto &list = _customAutoBindingResolvers; list.erase(std::remove(list.begin(), list.end(), this), list.end()); } void ProgramState::getVertexUniformBuffer(char** buffer, std::size_t& size) const { *buffer = _vertexUniformBuffer; size = _vertexUniformBufferSize; } void ProgramState::getFragmentUniformBuffer(char** buffer, std::size_t& size) const { *buffer = _fragmentUniformBuffer; size = _fragmentUniformBufferSize; } CC_BACKEND_END