/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include #include #include #include #define B2_DEBUG_SOLVER 0 struct b2ContactPositionConstraint { b2Vec2 localPoints[b2_maxManifoldPoints]; b2Vec2 localNormal; b2Vec2 localPoint; int32 indexA; int32 indexB; float32 invMassA, invMassB; b2Vec2 localCenterA, localCenterB; float32 invIA, invIB; b2Manifold::Type type; float32 radiusA, radiusB; int32 pointCount; }; b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) { m_step = def->step; m_allocator = def->allocator; m_count = def->count; m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); m_positions = def->positions; m_velocities = def->velocities; m_contacts = def->contacts; // Initialize position independent portions of the constraints. for (int32 i = 0; i < m_count; ++i) { b2Contact* contact = m_contacts[i]; b2Fixture* fixtureA = contact->m_fixtureA; b2Fixture* fixtureB = contact->m_fixtureB; b2Shape* shapeA = fixtureA->GetShape(); b2Shape* shapeB = fixtureB->GetShape(); float32 radiusA = shapeA->m_radius; float32 radiusB = shapeB->m_radius; b2Body* bodyA = fixtureA->GetBody(); b2Body* bodyB = fixtureB->GetBody(); b2Manifold* manifold = contact->GetManifold(); int32 pointCount = manifold->pointCount; b2Assert(pointCount > 0); b2ContactVelocityConstraint* vc = m_velocityConstraints + i; vc->friction = contact->m_friction; vc->restitution = contact->m_restitution; vc->indexA = bodyA->m_islandIndex; vc->indexB = bodyB->m_islandIndex; vc->invMassA = bodyA->m_invMass; vc->invMassB = bodyB->m_invMass; vc->invIA = bodyA->m_invI; vc->invIB = bodyB->m_invI; vc->contactIndex = i; vc->pointCount = pointCount; vc->K.SetZero(); vc->normalMass.SetZero(); b2ContactPositionConstraint* pc = m_positionConstraints + i; pc->indexA = bodyA->m_islandIndex; pc->indexB = bodyB->m_islandIndex; pc->invMassA = bodyA->m_invMass; pc->invMassB = bodyB->m_invMass; pc->localCenterA = bodyA->m_sweep.localCenter; pc->localCenterB = bodyB->m_sweep.localCenter; pc->invIA = bodyA->m_invI; pc->invIB = bodyB->m_invI; pc->localNormal = manifold->localNormal; pc->localPoint = manifold->localPoint; pc->pointCount = pointCount; pc->radiusA = radiusA; pc->radiusB = radiusB; pc->type = manifold->type; for (int32 j = 0; j < pointCount; ++j) { b2ManifoldPoint* cp = manifold->points + j; b2VelocityConstraintPoint* vcp = vc->points + j; if (m_step.warmStarting) { vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; } else { vcp->normalImpulse = 0.0f; vcp->tangentImpulse = 0.0f; } vcp->rA.SetZero(); vcp->rB.SetZero(); vcp->normalMass = 0.0f; vcp->tangentMass = 0.0f; vcp->velocityBias = 0.0f; pc->localPoints[j] = cp->localPoint; } } } b2ContactSolver::~b2ContactSolver() { m_allocator->Free(m_velocityConstraints); m_allocator->Free(m_positionConstraints); } // Initialize position dependent portions of the velocity constraints. void b2ContactSolver::InitializeVelocityConstraints() { for (int32 i = 0; i < m_count; ++i) { b2ContactVelocityConstraint* vc = m_velocityConstraints + i; b2ContactPositionConstraint* pc = m_positionConstraints + i; float32 radiusA = pc->radiusA; float32 radiusB = pc->radiusB; b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); int32 indexA = vc->indexA; int32 indexB = vc->indexB; float32 mA = vc->invMassA; float32 mB = vc->invMassB; float32 iA = vc->invIA; float32 iB = vc->invIB; b2Vec2 localCenterA = pc->localCenterA; b2Vec2 localCenterB = pc->localCenterB; b2Vec2 cA = m_positions[indexA].c; float32 aA = m_positions[indexA].a; b2Vec2 vA = m_velocities[indexA].v; float32 wA = m_velocities[indexA].w; b2Vec2 cB = m_positions[indexB].c; float32 aB = m_positions[indexB].a; b2Vec2 vB = m_velocities[indexB].v; float32 wB = m_velocities[indexB].w; b2Assert(manifold->pointCount > 0); b2Transform xfA, xfB; xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - b2Mul(xfA.q, localCenterA); xfB.p = cB - b2Mul(xfB.q, localCenterB); b2WorldManifold worldManifold; worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); vc->normal = worldManifold.normal; int32 pointCount = vc->pointCount; for (int32 j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint* vcp = vc->points + j; vcp->rA = worldManifold.points[j] - cA; vcp->rB = worldManifold.points[j] - cB; float32 rnA = b2Cross(vcp->rA, vc->normal); float32 rnB = b2Cross(vcp->rB, vc->normal); float32 kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; b2Vec2 tangent = b2Cross(vc->normal, 1.0f); float32 rtA = b2Cross(vcp->rA, tangent); float32 rtB = b2Cross(vcp->rB, tangent); float32 kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp->tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; // Setup a velocity bias for restitution. vcp->velocityBias = 0.0f; float32 vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); if (vRel < -b2_velocityThreshold) { vcp->velocityBias = -vc->restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc->pointCount == 2) { b2VelocityConstraintPoint* vcp1 = vc->points + 0; b2VelocityConstraintPoint* vcp2 = vc->points + 1; float32 rn1A = b2Cross(vcp1->rA, vc->normal); float32 rn1B = b2Cross(vcp1->rB, vc->normal); float32 rn2A = b2Cross(vcp2->rA, vc->normal); float32 rn2B = b2Cross(vcp2->rB, vc->normal); float32 k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float32 k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float32 k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float32 k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc->K.ex.Set(k11, k12); vc->K.ey.Set(k12, k22); vc->normalMass = vc->K.GetInverse(); } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc->pointCount = 1; } } } } void b2ContactSolver::WarmStart() { // Warm start. for (int32 i = 0; i < m_count; ++i) { b2ContactVelocityConstraint* vc = m_velocityConstraints + i; int32 indexA = vc->indexA; int32 indexB = vc->indexB; float32 mA = vc->invMassA; float32 iA = vc->invIA; float32 mB = vc->invMassB; float32 iB = vc->invIB; int32 pointCount = vc->pointCount; b2Vec2 vA = m_velocities[indexA].v; float32 wA = m_velocities[indexA].w; b2Vec2 vB = m_velocities[indexB].v; float32 wB = m_velocities[indexB].w; b2Vec2 normal = vc->normal; b2Vec2 tangent = b2Cross(normal, 1.0f); for (int32 j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint* vcp = vc->points + j; b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; wA -= iA * b2Cross(vcp->rA, P); vA -= mA * P; wB += iB * b2Cross(vcp->rB, P); vB += mB * P; } m_velocities[indexA].v = vA; m_velocities[indexA].w = wA; m_velocities[indexB].v = vB; m_velocities[indexB].w = wB; } } void b2ContactSolver::SolveVelocityConstraints() { for (int32 i = 0; i < m_count; ++i) { b2ContactVelocityConstraint* vc = m_velocityConstraints + i; int32 indexA = vc->indexA; int32 indexB = vc->indexB; float32 mA = vc->invMassA; float32 iA = vc->invIA; float32 mB = vc->invMassB; float32 iB = vc->invIB; int32 pointCount = vc->pointCount; b2Vec2 vA = m_velocities[indexA].v; float32 wA = m_velocities[indexA].w; b2Vec2 vB = m_velocities[indexB].v; float32 wB = m_velocities[indexB].w; b2Vec2 normal = vc->normal; b2Vec2 tangent = b2Cross(normal, 1.0f); float32 friction = vc->friction; b2Assert(pointCount == 1 || pointCount == 2); // Solve tangent constraints first because non-penetration is more important // than friction. for (int32 j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint* vcp = vc->points + j; // Relative velocity at contact b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); // Compute tangent force float32 vt = b2Dot(dv, tangent); float32 lambda = vcp->tangentMass * (-vt); // b2Clamp the accumulated force float32 maxFriction = friction * vcp->normalImpulse; float32 newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - vcp->tangentImpulse; vcp->tangentImpulse = newImpulse; // Apply contact impulse b2Vec2 P = lambda * tangent; vA -= mA * P; wA -= iA * b2Cross(vcp->rA, P); vB += mB * P; wB += iB * b2Cross(vcp->rB, P); } // Solve normal constraints if (vc->pointCount == 1) { b2VelocityConstraintPoint* vcp = vc->points + 0; // Relative velocity at contact b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); // Compute normal impulse float32 vn = b2Dot(dv, normal); float32 lambda = -vcp->normalMass * (vn - vcp->velocityBias); // b2Clamp the accumulated impulse float32 newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); lambda = newImpulse - vcp->normalImpulse; vcp->normalImpulse = newImpulse; // Apply contact impulse b2Vec2 P = lambda * normal; vA -= mA * P; wA -= iA * b2Cross(vcp->rA, P); vB += mB * P; wB += iB * b2Cross(vcp->rB, P); } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = a + d // // a := old total impulse // x := new total impulse // d := incremental impulse // // For the current iteration we extend the formula for the incremental impulse // to compute the new total impulse: // // vn = A * d + b // = A * (x - a) + b // = A * x + b - A * a // = A * x + b' // b' = b - A * a; b2VelocityConstraintPoint* cp1 = vc->points + 0; b2VelocityConstraintPoint* cp2 = vc->points + 1; b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); b2Assert(a.x >= 0.0f && a.y >= 0.0f); // Relative velocity at contact b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity float32 vn1 = b2Dot(dv1, normal); float32 vn2 = b2Dot(dv2, normal); b2Vec2 b; b.x = vn1 - cp1->velocityBias; b.y = vn2 - cp2->velocityBias; // Compute b' b -= b2Mul(vc->K, a); const float32 k_errorTol = 1e-3f; B2_NOT_USED(k_errorTol); for (;;) { // // Case 1: vn = 0 // // 0 = A * x + b' // // Solve for x: // // x = - inv(A) * b' // b2Vec2 x = - b2Mul(vc->normalMass, b); if (x.x >= 0.0f && x.y >= 0.0f) { // Get the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += mB * (P1 + P2); wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity vn1 = b2Dot(dv1, normal); vn2 = b2Dot(dv2, normal); b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); #endif break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1 + a12 * 0 + b1' // vn2 = a21 * x1 + a22 * 0 + b2' // x.x = - cp1->normalMass * b.x; x.y = 0.0f; vn1 = 0.0f; vn2 = vc->K.ex.y * x.x + b.y; if (x.x >= 0.0f && vn2 >= 0.0f) { // Get the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += mB * (P1 + P2); wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); // Compute normal velocity vn1 = b2Dot(dv1, normal); b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); #endif break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2 + b1' // 0 = a21 * 0 + a22 * x2 + b2' // x.x = 0.0f; x.y = - cp2->normalMass * b.y; vn1 = vc->K.ey.x * x.y + b.x; vn2 = 0.0f; if (x.y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += mB * (P1 + P2); wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity vn2 = b2Dot(dv2, normal); b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); #endif break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.x = 0.0f; x.y = 0.0f; vn1 = b.x; vn2 = b.y; if (vn1 >= 0.0f && vn2 >= 0.0f ) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += mB * (P1 + P2); wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } m_velocities[indexA].v = vA; m_velocities[indexA].w = wA; m_velocities[indexB].v = vB; m_velocities[indexB].w = wB; } } void b2ContactSolver::StoreImpulses() { for (int32 i = 0; i < m_count; ++i) { b2ContactVelocityConstraint* vc = m_velocityConstraints + i; b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); for (int32 j = 0; j < vc->pointCount; ++j) { manifold->points[j].normalImpulse = vc->points[j].normalImpulse; manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; } } } struct b2PositionSolverManifold { void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) { b2Assert(pc->pointCount > 0); switch (pc->type) { case b2Manifold::e_circles: { b2Vec2 pointA = b2Mul(xfA, pc->localPoint); b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); normal = pointB - pointA; normal.Normalize(); point = 0.5f * (pointA + pointB); separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; } break; case b2Manifold::e_faceA: { normal = b2Mul(xfA.q, pc->localNormal); b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; point = clipPoint; } break; case b2Manifold::e_faceB: { normal = b2Mul(xfB.q, pc->localNormal); b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; point = clipPoint; // Ensure normal points from A to B normal = -normal; } break; } } b2Vec2 normal; b2Vec2 point; float32 separation; }; // Sequential solver. bool b2ContactSolver::SolvePositionConstraints() { float32 minSeparation = 0.0f; for (int32 i = 0; i < m_count; ++i) { b2ContactPositionConstraint* pc = m_positionConstraints + i; int32 indexA = pc->indexA; int32 indexB = pc->indexB; b2Vec2 localCenterA = pc->localCenterA; float32 mA = pc->invMassA; float32 iA = pc->invIA; b2Vec2 localCenterB = pc->localCenterB; float32 mB = pc->invMassB; float32 iB = pc->invIB; int32 pointCount = pc->pointCount; b2Vec2 cA = m_positions[indexA].c; float32 aA = m_positions[indexA].a; b2Vec2 cB = m_positions[indexB].c; float32 aB = m_positions[indexB].a; // Solve normal constraints for (int32 j = 0; j < pointCount; ++j) { b2Transform xfA, xfB; xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - b2Mul(xfA.q, localCenterA); xfB.p = cB - b2Mul(xfB.q, localCenterB); b2PositionSolverManifold psm; psm.Initialize(pc, xfA, xfB, j); b2Vec2 normal = psm.normal; b2Vec2 point = psm.point; float32 separation = psm.separation; b2Vec2 rA = point - cA; b2Vec2 rB = point - cB; // Track max constraint error. minSeparation = b2Min(minSeparation, separation); // Prevent large corrections and allow slop. float32 C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); // Compute the effective mass. float32 rnA = b2Cross(rA, normal); float32 rnB = b2Cross(rB, normal); float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; // Compute normal impulse float32 impulse = K > 0.0f ? - C / K : 0.0f; b2Vec2 P = impulse * normal; cA -= mA * P; aA -= iA * b2Cross(rA, P); cB += mB * P; aB += iB * b2Cross(rB, P); } m_positions[indexA].c = cA; m_positions[indexA].a = aA; m_positions[indexB].c = cB; m_positions[indexB].a = aB; } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return minSeparation >= -3.0f * b2_linearSlop; } // Sequential position solver for position constraints. bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) { float32 minSeparation = 0.0f; for (int32 i = 0; i < m_count; ++i) { b2ContactPositionConstraint* pc = m_positionConstraints + i; int32 indexA = pc->indexA; int32 indexB = pc->indexB; b2Vec2 localCenterA = pc->localCenterA; b2Vec2 localCenterB = pc->localCenterB; int32 pointCount = pc->pointCount; float32 mA = 0.0f; float32 iA = 0.0f; if (indexA == toiIndexA || indexA == toiIndexB) { mA = pc->invMassA; iA = pc->invIA; } float32 mB = pc->invMassB; float32 iB = pc->invIB; if (indexB == toiIndexA || indexB == toiIndexB) { mB = pc->invMassB; iB = pc->invIB; } b2Vec2 cA = m_positions[indexA].c; float32 aA = m_positions[indexA].a; b2Vec2 cB = m_positions[indexB].c; float32 aB = m_positions[indexB].a; // Solve normal constraints for (int32 j = 0; j < pointCount; ++j) { b2Transform xfA, xfB; xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - b2Mul(xfA.q, localCenterA); xfB.p = cB - b2Mul(xfB.q, localCenterB); b2PositionSolverManifold psm; psm.Initialize(pc, xfA, xfB, j); b2Vec2 normal = psm.normal; b2Vec2 point = psm.point; float32 separation = psm.separation; b2Vec2 rA = point - cA; b2Vec2 rB = point - cB; // Track max constraint error. minSeparation = b2Min(minSeparation, separation); // Prevent large corrections and allow slop. float32 C = b2Clamp(b2_toiBaugarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); // Compute the effective mass. float32 rnA = b2Cross(rA, normal); float32 rnB = b2Cross(rB, normal); float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; // Compute normal impulse float32 impulse = K > 0.0f ? - C / K : 0.0f; b2Vec2 P = impulse * normal; cA -= mA * P; aA -= iA * b2Cross(rA, P); cB += mB * P; aB += iB * b2Cross(rB, P); } m_positions[indexA].c = cA; m_positions[indexA].a = aA; m_positions[indexB].c = cB; m_positions[indexB].a = aB; } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return minSeparation >= -1.5f * b2_linearSlop; }