/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FLATBUFFERS_H_ #define FLATBUFFERS_H_ #include "flatbuffers/base.h" #if defined(FLATBUFFERS_NAN_DEFAULTS) # include #endif namespace flatbuffers { // Generic 'operator==' with conditional specialisations. // T e - new value of a scalar field. // T def - default of scalar (is known at compile-time). template inline bool IsTheSameAs(T e, T def) { return e == def; } #if defined(FLATBUFFERS_NAN_DEFAULTS) && \ defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) // Like `operator==(e, def)` with weak NaN if T=(float|double). template inline bool IsFloatTheSameAs(T e, T def) { return (e == def) || ((def != def) && (e != e)); } template<> inline bool IsTheSameAs(float e, float def) { return IsFloatTheSameAs(e, def); } template<> inline bool IsTheSameAs(double e, double def) { return IsFloatTheSameAs(e, def); } #endif // Check 'v' is out of closed range [low; high]. // Workaround for GCC warning [-Werror=type-limits]: // comparison is always true due to limited range of data type. template inline bool IsOutRange(const T &v, const T &low, const T &high) { return (v < low) || (high < v); } // Check 'v' is in closed range [low; high]. template inline bool IsInRange(const T &v, const T &low, const T &high) { return !IsOutRange(v, low, high); } // Wrapper for uoffset_t to allow safe template specialization. // Value is allowed to be 0 to indicate a null object (see e.g. AddOffset). template struct Offset { uoffset_t o; Offset() : o(0) {} Offset(uoffset_t _o) : o(_o) {} Offset Union() const { return Offset(o); } bool IsNull() const { return !o; } }; inline void EndianCheck() { int endiantest = 1; // If this fails, see FLATBUFFERS_LITTLEENDIAN above. FLATBUFFERS_ASSERT(*reinterpret_cast(&endiantest) == FLATBUFFERS_LITTLEENDIAN); (void)endiantest; } template FLATBUFFERS_CONSTEXPR size_t AlignOf() { // clang-format off #ifdef _MSC_VER return __alignof(T); #else #ifndef alignof return __alignof__(T); #else return alignof(T); #endif #endif // clang-format on } // When we read serialized data from memory, in the case of most scalars, // we want to just read T, but in the case of Offset, we want to actually // perform the indirection and return a pointer. // The template specialization below does just that. // It is wrapped in a struct since function templates can't overload on the // return type like this. // The typedef is for the convenience of callers of this function // (avoiding the need for a trailing return decltype) template struct IndirectHelper { typedef T return_type; typedef T mutable_return_type; static const size_t element_stride = sizeof(T); static return_type Read(const uint8_t *p, uoffset_t i) { return EndianScalar((reinterpret_cast(p))[i]); } }; template struct IndirectHelper> { typedef const T *return_type; typedef T *mutable_return_type; static const size_t element_stride = sizeof(uoffset_t); static return_type Read(const uint8_t *p, uoffset_t i) { p += i * sizeof(uoffset_t); return reinterpret_cast(p + ReadScalar(p)); } }; template struct IndirectHelper { typedef const T *return_type; typedef T *mutable_return_type; static const size_t element_stride = sizeof(T); static return_type Read(const uint8_t *p, uoffset_t i) { return reinterpret_cast(p + i * sizeof(T)); } }; // An STL compatible iterator implementation for Vector below, effectively // calling Get() for every element. template struct VectorIterator { typedef std::random_access_iterator_tag iterator_category; typedef IT value_type; typedef ptrdiff_t difference_type; typedef IT *pointer; typedef IT &reference; VectorIterator(const uint8_t *data, uoffset_t i) : data_(data + IndirectHelper::element_stride * i) {} VectorIterator(const VectorIterator &other) : data_(other.data_) {} VectorIterator() : data_(nullptr) {} VectorIterator &operator=(const VectorIterator &other) { data_ = other.data_; return *this; } // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) VectorIterator &operator=(VectorIterator &&other) { data_ = other.data_; return *this; } #endif // !defined(FLATBUFFERS_CPP98_STL) // clang-format on bool operator==(const VectorIterator &other) const { return data_ == other.data_; } bool operator<(const VectorIterator &other) const { return data_ < other.data_; } bool operator!=(const VectorIterator &other) const { return data_ != other.data_; } difference_type operator-(const VectorIterator &other) const { return (data_ - other.data_) / IndirectHelper::element_stride; } IT operator*() const { return IndirectHelper::Read(data_, 0); } IT operator->() const { return IndirectHelper::Read(data_, 0); } VectorIterator &operator++() { data_ += IndirectHelper::element_stride; return *this; } VectorIterator operator++(int) { VectorIterator temp(data_, 0); data_ += IndirectHelper::element_stride; return temp; } VectorIterator operator+(const uoffset_t &offset) const { return VectorIterator(data_ + offset * IndirectHelper::element_stride, 0); } VectorIterator &operator+=(const uoffset_t &offset) { data_ += offset * IndirectHelper::element_stride; return *this; } VectorIterator &operator--() { data_ -= IndirectHelper::element_stride; return *this; } VectorIterator operator--(int) { VectorIterator temp(data_, 0); data_ -= IndirectHelper::element_stride; return temp; } VectorIterator operator-(const uoffset_t &offset) const { return VectorIterator(data_ - offset * IndirectHelper::element_stride, 0); } VectorIterator &operator-=(const uoffset_t &offset) { data_ -= offset * IndirectHelper::element_stride; return *this; } private: const uint8_t *data_; }; template struct VectorReverseIterator : public std::reverse_iterator { explicit VectorReverseIterator(Iterator iter) : std::reverse_iterator(iter) {} typename Iterator::value_type operator*() const { return *(std::reverse_iterator::current); } typename Iterator::value_type operator->() const { return *(std::reverse_iterator::current); } }; struct String; // This is used as a helper type for accessing vectors. // Vector::data() assumes the vector elements start after the length field. template class Vector { public: typedef VectorIterator::mutable_return_type> iterator; typedef VectorIterator::return_type> const_iterator; typedef VectorReverseIterator reverse_iterator; typedef VectorReverseIterator const_reverse_iterator; uoffset_t size() const { return EndianScalar(length_); } // Deprecated: use size(). Here for backwards compatibility. FLATBUFFERS_ATTRIBUTE(deprecated("use size() instead")) uoffset_t Length() const { return size(); } typedef typename IndirectHelper::return_type return_type; typedef typename IndirectHelper::mutable_return_type mutable_return_type; return_type Get(uoffset_t i) const { FLATBUFFERS_ASSERT(i < size()); return IndirectHelper::Read(Data(), i); } return_type operator[](uoffset_t i) const { return Get(i); } // If this is a Vector of enums, T will be its storage type, not the enum // type. This function makes it convenient to retrieve value with enum // type E. template E GetEnum(uoffset_t i) const { return static_cast(Get(i)); } // If this a vector of unions, this does the cast for you. There's no check // to make sure this is the right type! template const U *GetAs(uoffset_t i) const { return reinterpret_cast(Get(i)); } // If this a vector of unions, this does the cast for you. There's no check // to make sure this is actually a string! const String *GetAsString(uoffset_t i) const { return reinterpret_cast(Get(i)); } const void *GetStructFromOffset(size_t o) const { return reinterpret_cast(Data() + o); } iterator begin() { return iterator(Data(), 0); } const_iterator begin() const { return const_iterator(Data(), 0); } iterator end() { return iterator(Data(), size()); } const_iterator end() const { return const_iterator(Data(), size()); } reverse_iterator rbegin() { return reverse_iterator(end() - 1); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end() - 1); } reverse_iterator rend() { return reverse_iterator(begin() - 1); } const_reverse_iterator rend() const { return const_reverse_iterator(begin() - 1); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } const_reverse_iterator crbegin() const { return rbegin(); } const_reverse_iterator crend() const { return rend(); } // Change elements if you have a non-const pointer to this object. // Scalars only. See reflection.h, and the documentation. void Mutate(uoffset_t i, const T &val) { FLATBUFFERS_ASSERT(i < size()); WriteScalar(data() + i, val); } // Change an element of a vector of tables (or strings). // "val" points to the new table/string, as you can obtain from // e.g. reflection::AddFlatBuffer(). void MutateOffset(uoffset_t i, const uint8_t *val) { FLATBUFFERS_ASSERT(i < size()); static_assert(sizeof(T) == sizeof(uoffset_t), "Unrelated types"); WriteScalar(data() + i, static_cast(val - (Data() + i * sizeof(uoffset_t)))); } // Get a mutable pointer to tables/strings inside this vector. mutable_return_type GetMutableObject(uoffset_t i) const { FLATBUFFERS_ASSERT(i < size()); return const_cast(IndirectHelper::Read(Data(), i)); } // The raw data in little endian format. Use with care. const uint8_t *Data() const { return reinterpret_cast(&length_ + 1); } uint8_t *Data() { return reinterpret_cast(&length_ + 1); } // Similarly, but typed, much like std::vector::data const T *data() const { return reinterpret_cast(Data()); } T *data() { return reinterpret_cast(Data()); } template return_type LookupByKey(K key) const { void *search_result = std::bsearch( &key, Data(), size(), IndirectHelper::element_stride, KeyCompare); if (!search_result) { return nullptr; // Key not found. } const uint8_t *element = reinterpret_cast(search_result); return IndirectHelper::Read(element, 0); } protected: // This class is only used to access pre-existing data. Don't ever // try to construct these manually. Vector(); uoffset_t length_; private: // This class is a pointer. Copying will therefore create an invalid object. // Private and unimplemented copy constructor. Vector(const Vector &); Vector &operator=(const Vector &); template static int KeyCompare(const void *ap, const void *bp) { const K *key = reinterpret_cast(ap); const uint8_t *data = reinterpret_cast(bp); auto table = IndirectHelper::Read(data, 0); // std::bsearch compares with the operands transposed, so we negate the // result here. return -table->KeyCompareWithValue(*key); } }; // Represent a vector much like the template above, but in this case we // don't know what the element types are (used with reflection.h). class VectorOfAny { public: uoffset_t size() const { return EndianScalar(length_); } const uint8_t *Data() const { return reinterpret_cast(&length_ + 1); } uint8_t *Data() { return reinterpret_cast(&length_ + 1); } protected: VectorOfAny(); uoffset_t length_; private: VectorOfAny(const VectorOfAny &); VectorOfAny &operator=(const VectorOfAny &); }; #ifndef FLATBUFFERS_CPP98_STL template Vector> *VectorCast(Vector> *ptr) { static_assert(std::is_base_of::value, "Unrelated types"); return reinterpret_cast> *>(ptr); } template const Vector> *VectorCast(const Vector> *ptr) { static_assert(std::is_base_of::value, "Unrelated types"); return reinterpret_cast> *>(ptr); } #endif // Convenient helper function to get the length of any vector, regardless // of whether it is null or not (the field is not set). template static inline size_t VectorLength(const Vector *v) { return v ? v->size() : 0; } // This is used as a helper type for accessing arrays. template class Array { typedef typename flatbuffers::integral_constant::value> scalar_tag; typedef typename flatbuffers::conditional::type IndirectHelperType; public: typedef typename IndirectHelper::return_type return_type; typedef VectorIterator const_iterator; typedef VectorReverseIterator const_reverse_iterator; FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; } return_type Get(uoffset_t i) const { FLATBUFFERS_ASSERT(i < size()); return IndirectHelper::Read(Data(), i); } return_type operator[](uoffset_t i) const { return Get(i); } // If this is a Vector of enums, T will be its storage type, not the enum // type. This function makes it convenient to retrieve value with enum // type E. template E GetEnum(uoffset_t i) const { return static_cast(Get(i)); } const_iterator begin() const { return const_iterator(Data(), 0); } const_iterator end() const { return const_iterator(Data(), size()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator rend() const { return const_reverse_iterator(end()); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } const_reverse_iterator crbegin() const { return rbegin(); } const_reverse_iterator crend() const { return rend(); } // Get a mutable pointer to elements inside this array. // This method used to mutate arrays of structs followed by a @p Mutate // operation. For primitive types use @p Mutate directly. // @warning Assignments and reads to/from the dereferenced pointer are not // automatically converted to the correct endianness. typename flatbuffers::conditional::type GetMutablePointer(uoffset_t i) const { FLATBUFFERS_ASSERT(i < size()); return const_cast(&data()[i]); } // Change elements if you have a non-const pointer to this object. void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); } // The raw data in little endian format. Use with care. const uint8_t *Data() const { return data_; } uint8_t *Data() { return data_; } // Similarly, but typed, much like std::vector::data const T *data() const { return reinterpret_cast(Data()); } T *data() { return reinterpret_cast(Data()); } protected: void MutateImpl(flatbuffers::integral_constant, uoffset_t i, const T &val) { FLATBUFFERS_ASSERT(i < size()); WriteScalar(data() + i, val); } void MutateImpl(flatbuffers::integral_constant, uoffset_t i, const T &val) { *(GetMutablePointer(i)) = val; } // This class is only used to access pre-existing data. Don't ever // try to construct these manually. // 'constexpr' allows us to use 'size()' at compile time. // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on // a constructor. #if defined(__cpp_constexpr) constexpr Array(); #else Array(); #endif uint8_t data_[length * sizeof(T)]; private: // This class is a pointer. Copying will therefore create an invalid object. // Private and unimplemented copy constructor. Array(const Array &); Array &operator=(const Array &); }; // Specialization for Array[struct] with access using Offset pointer. // This specialization used by idl_gen_text.cpp. template class Array, length> { static_assert(flatbuffers::is_same::value, "unexpected type T"); public: typedef const void *return_type; const uint8_t *Data() const { return data_; } // Make idl_gen_text.cpp::PrintContainer happy. return_type operator[](uoffset_t) const { FLATBUFFERS_ASSERT(false); return nullptr; } private: // This class is only used to access pre-existing data. Array(); Array(const Array &); Array &operator=(const Array &); uint8_t data_[1]; }; // Lexicographically compare two strings (possibly containing nulls), and // return true if the first is less than the second. static inline bool StringLessThan(const char *a_data, uoffset_t a_size, const char *b_data, uoffset_t b_size) { const auto cmp = memcmp(a_data, b_data, (std::min)(a_size, b_size)); return cmp == 0 ? a_size < b_size : cmp < 0; } struct String : public Vector { const char *c_str() const { return reinterpret_cast(Data()); } std::string str() const { return std::string(c_str(), size()); } // clang-format off #ifdef FLATBUFFERS_HAS_STRING_VIEW flatbuffers::string_view string_view() const { return flatbuffers::string_view(c_str(), size()); } #endif // FLATBUFFERS_HAS_STRING_VIEW // clang-format on bool operator<(const String &o) const { return StringLessThan(this->data(), this->size(), o.data(), o.size()); } }; // Convenience function to get std::string from a String returning an empty // string on null pointer. static inline std::string GetString(const String *str) { return str ? str->str() : ""; } // Convenience function to get char* from a String returning an empty string on // null pointer. static inline const char *GetCstring(const String *str) { return str ? str->c_str() : ""; } // Allocator interface. This is flatbuffers-specific and meant only for // `vector_downward` usage. class Allocator { public: virtual ~Allocator() {} // Allocate `size` bytes of memory. virtual uint8_t *allocate(size_t size) = 0; // Deallocate `size` bytes of memory at `p` allocated by this allocator. virtual void deallocate(uint8_t *p, size_t size) = 0; // Reallocate `new_size` bytes of memory, replacing the old region of size // `old_size` at `p`. In contrast to a normal realloc, this grows downwards, // and is intended specifcally for `vector_downward` use. // `in_use_back` and `in_use_front` indicate how much of `old_size` is // actually in use at each end, and needs to be copied. virtual uint8_t *reallocate_downward(uint8_t *old_p, size_t old_size, size_t new_size, size_t in_use_back, size_t in_use_front) { FLATBUFFERS_ASSERT(new_size > old_size); // vector_downward only grows uint8_t *new_p = allocate(new_size); memcpy_downward(old_p, old_size, new_p, new_size, in_use_back, in_use_front); deallocate(old_p, old_size); return new_p; } protected: // Called by `reallocate_downward` to copy memory from `old_p` of `old_size` // to `new_p` of `new_size`. Only memory of size `in_use_front` and // `in_use_back` will be copied from the front and back of the old memory // allocation. void memcpy_downward(uint8_t *old_p, size_t old_size, uint8_t *new_p, size_t new_size, size_t in_use_back, size_t in_use_front) { memcpy(new_p + new_size - in_use_back, old_p + old_size - in_use_back, in_use_back); memcpy(new_p, old_p, in_use_front); } }; // DefaultAllocator uses new/delete to allocate memory regions class DefaultAllocator : public Allocator { public: uint8_t *allocate(size_t size) FLATBUFFERS_OVERRIDE { return new uint8_t[size]; } void deallocate(uint8_t *p, size_t) FLATBUFFERS_OVERRIDE { delete[] p; } static void dealloc(void *p, size_t) { delete[] static_cast(p); } }; // These functions allow for a null allocator to mean use the default allocator, // as used by DetachedBuffer and vector_downward below. // This is to avoid having a statically or dynamically allocated default // allocator, or having to move it between the classes that may own it. inline uint8_t *Allocate(Allocator *allocator, size_t size) { return allocator ? allocator->allocate(size) : DefaultAllocator().allocate(size); } inline void Deallocate(Allocator *allocator, uint8_t *p, size_t size) { if (allocator) allocator->deallocate(p, size); else DefaultAllocator().deallocate(p, size); } inline uint8_t *ReallocateDownward(Allocator *allocator, uint8_t *old_p, size_t old_size, size_t new_size, size_t in_use_back, size_t in_use_front) { return allocator ? allocator->reallocate_downward(old_p, old_size, new_size, in_use_back, in_use_front) : DefaultAllocator().reallocate_downward( old_p, old_size, new_size, in_use_back, in_use_front); } // DetachedBuffer is a finished flatbuffer memory region, detached from its // builder. The original memory region and allocator are also stored so that // the DetachedBuffer can manage the memory lifetime. class DetachedBuffer { public: DetachedBuffer() : allocator_(nullptr), own_allocator_(false), buf_(nullptr), reserved_(0), cur_(nullptr), size_(0) {} DetachedBuffer(Allocator *allocator, bool own_allocator, uint8_t *buf, size_t reserved, uint8_t *cur, size_t sz) : allocator_(allocator), own_allocator_(own_allocator), buf_(buf), reserved_(reserved), cur_(cur), size_(sz) {} // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) // clang-format on DetachedBuffer(DetachedBuffer &&other) : allocator_(other.allocator_), own_allocator_(other.own_allocator_), buf_(other.buf_), reserved_(other.reserved_), cur_(other.cur_), size_(other.size_) { other.reset(); } // clang-format off #endif // !defined(FLATBUFFERS_CPP98_STL) // clang-format on // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) // clang-format on DetachedBuffer &operator=(DetachedBuffer &&other) { if (this == &other) return *this; destroy(); allocator_ = other.allocator_; own_allocator_ = other.own_allocator_; buf_ = other.buf_; reserved_ = other.reserved_; cur_ = other.cur_; size_ = other.size_; other.reset(); return *this; } // clang-format off #endif // !defined(FLATBUFFERS_CPP98_STL) // clang-format on ~DetachedBuffer() { destroy(); } const uint8_t *data() const { return cur_; } uint8_t *data() { return cur_; } size_t size() const { return size_; } // clang-format off #if 0 // disabled for now due to the ordering of classes in this header template bool Verify() const { Verifier verifier(data(), size()); return verifier.Verify(nullptr); } template const T* GetRoot() const { return flatbuffers::GetRoot(data()); } template T* GetRoot() { return flatbuffers::GetRoot(data()); } #endif // clang-format on // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) // clang-format on // These may change access mode, leave these at end of public section FLATBUFFERS_DELETE_FUNC(DetachedBuffer(const DetachedBuffer &other)) FLATBUFFERS_DELETE_FUNC( DetachedBuffer &operator=(const DetachedBuffer &other)) // clang-format off #endif // !defined(FLATBUFFERS_CPP98_STL) // clang-format on protected: Allocator *allocator_; bool own_allocator_; uint8_t *buf_; size_t reserved_; uint8_t *cur_; size_t size_; inline void destroy() { if (buf_) Deallocate(allocator_, buf_, reserved_); if (own_allocator_ && allocator_) { delete allocator_; } reset(); } inline void reset() { allocator_ = nullptr; own_allocator_ = false; buf_ = nullptr; reserved_ = 0; cur_ = nullptr; size_ = 0; } }; // This is a minimal replication of std::vector functionality, // except growing from higher to lower addresses. i.e push_back() inserts data // in the lowest address in the vector. // Since this vector leaves the lower part unused, we support a "scratch-pad" // that can be stored there for temporary data, to share the allocated space. // Essentially, this supports 2 std::vectors in a single buffer. class vector_downward { public: explicit vector_downward(size_t initial_size, Allocator *allocator, bool own_allocator, size_t buffer_minalign) : allocator_(allocator), own_allocator_(own_allocator), initial_size_(initial_size), buffer_minalign_(buffer_minalign), reserved_(0), buf_(nullptr), cur_(nullptr), scratch_(nullptr) {} // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) vector_downward(vector_downward &&other) #else vector_downward(vector_downward &other) #endif // defined(FLATBUFFERS_CPP98_STL) // clang-format on : allocator_(other.allocator_), own_allocator_(other.own_allocator_), initial_size_(other.initial_size_), buffer_minalign_(other.buffer_minalign_), reserved_(other.reserved_), buf_(other.buf_), cur_(other.cur_), scratch_(other.scratch_) { // No change in other.allocator_ // No change in other.initial_size_ // No change in other.buffer_minalign_ other.own_allocator_ = false; other.reserved_ = 0; other.buf_ = nullptr; other.cur_ = nullptr; other.scratch_ = nullptr; } // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) // clang-format on vector_downward &operator=(vector_downward &&other) { // Move construct a temporary and swap idiom vector_downward temp(std::move(other)); swap(temp); return *this; } // clang-format off #endif // defined(FLATBUFFERS_CPP98_STL) // clang-format on ~vector_downward() { clear_buffer(); clear_allocator(); } void reset() { clear_buffer(); clear(); } void clear() { if (buf_) { cur_ = buf_ + reserved_; } else { reserved_ = 0; cur_ = nullptr; } clear_scratch(); } void clear_scratch() { scratch_ = buf_; } void clear_allocator() { if (own_allocator_ && allocator_) { delete allocator_; } allocator_ = nullptr; own_allocator_ = false; } void clear_buffer() { if (buf_) Deallocate(allocator_, buf_, reserved_); buf_ = nullptr; } // Relinquish the pointer to the caller. uint8_t *release_raw(size_t &allocated_bytes, size_t &offset) { auto *buf = buf_; allocated_bytes = reserved_; offset = static_cast(cur_ - buf_); // release_raw only relinquishes the buffer ownership. // Does not deallocate or reset the allocator. Destructor will do that. buf_ = nullptr; clear(); return buf; } // Relinquish the pointer to the caller. DetachedBuffer release() { // allocator ownership (if any) is transferred to DetachedBuffer. DetachedBuffer fb(allocator_, own_allocator_, buf_, reserved_, cur_, size()); if (own_allocator_) { allocator_ = nullptr; own_allocator_ = false; } buf_ = nullptr; clear(); return fb; } size_t ensure_space(size_t len) { FLATBUFFERS_ASSERT(cur_ >= scratch_ && scratch_ >= buf_); if (len > static_cast(cur_ - scratch_)) { reallocate(len); } // Beyond this, signed offsets may not have enough range: // (FlatBuffers > 2GB not supported). FLATBUFFERS_ASSERT(size() < FLATBUFFERS_MAX_BUFFER_SIZE); return len; } inline uint8_t *make_space(size_t len) { size_t space = ensure_space(len); cur_ -= space; return cur_; } // Returns nullptr if using the DefaultAllocator. Allocator *get_custom_allocator() { return allocator_; } uoffset_t size() const { return static_cast(reserved_ - (cur_ - buf_)); } uoffset_t scratch_size() const { return static_cast(scratch_ - buf_); } size_t capacity() const { return reserved_; } uint8_t *data() const { FLATBUFFERS_ASSERT(cur_); return cur_; } uint8_t *scratch_data() const { FLATBUFFERS_ASSERT(buf_); return buf_; } uint8_t *scratch_end() const { FLATBUFFERS_ASSERT(scratch_); return scratch_; } uint8_t *data_at(size_t offset) const { return buf_ + reserved_ - offset; } void push(const uint8_t *bytes, size_t num) { if (num > 0) { memcpy(make_space(num), bytes, num); } } // Specialized version of push() that avoids memcpy call for small data. template void push_small(const T &little_endian_t) { make_space(sizeof(T)); *reinterpret_cast(cur_) = little_endian_t; } template void scratch_push_small(const T &t) { ensure_space(sizeof(T)); *reinterpret_cast(scratch_) = t; scratch_ += sizeof(T); } // fill() is most frequently called with small byte counts (<= 4), // which is why we're using loops rather than calling memset. void fill(size_t zero_pad_bytes) { make_space(zero_pad_bytes); for (size_t i = 0; i < zero_pad_bytes; i++) cur_[i] = 0; } // Version for when we know the size is larger. // Precondition: zero_pad_bytes > 0 void fill_big(size_t zero_pad_bytes) { memset(make_space(zero_pad_bytes), 0, zero_pad_bytes); } void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; } void scratch_pop(size_t bytes_to_remove) { scratch_ -= bytes_to_remove; } void swap(vector_downward &other) { using std::swap; swap(allocator_, other.allocator_); swap(own_allocator_, other.own_allocator_); swap(initial_size_, other.initial_size_); swap(buffer_minalign_, other.buffer_minalign_); swap(reserved_, other.reserved_); swap(buf_, other.buf_); swap(cur_, other.cur_); swap(scratch_, other.scratch_); } void swap_allocator(vector_downward &other) { using std::swap; swap(allocator_, other.allocator_); swap(own_allocator_, other.own_allocator_); } private: // You shouldn't really be copying instances of this class. FLATBUFFERS_DELETE_FUNC(vector_downward(const vector_downward &)) FLATBUFFERS_DELETE_FUNC(vector_downward &operator=(const vector_downward &)) Allocator *allocator_; bool own_allocator_; size_t initial_size_; size_t buffer_minalign_; size_t reserved_; uint8_t *buf_; uint8_t *cur_; // Points at location between empty (below) and used (above). uint8_t *scratch_; // Points to the end of the scratchpad in use. void reallocate(size_t len) { auto old_reserved = reserved_; auto old_size = size(); auto old_scratch_size = scratch_size(); reserved_ += (std::max)(len, old_reserved ? old_reserved / 2 : initial_size_); reserved_ = (reserved_ + buffer_minalign_ - 1) & ~(buffer_minalign_ - 1); if (buf_) { buf_ = ReallocateDownward(allocator_, buf_, old_reserved, reserved_, old_size, old_scratch_size); } else { buf_ = Allocate(allocator_, reserved_); } cur_ = buf_ + reserved_ - old_size; scratch_ = buf_ + old_scratch_size; } }; // Converts a Field ID to a virtual table offset. inline voffset_t FieldIndexToOffset(voffset_t field_id) { // Should correspond to what EndTable() below builds up. const int fixed_fields = 2; // Vtable size and Object Size. return static_cast((field_id + fixed_fields) * sizeof(voffset_t)); } template const T *data(const std::vector &v) { // Eventually the returned pointer gets passed down to memcpy, so // we need it to be non-null to avoid undefined behavior. static uint8_t t; return v.empty() ? reinterpret_cast(&t) : &v.front(); } template T *data(std::vector &v) { // Eventually the returned pointer gets passed down to memcpy, so // we need it to be non-null to avoid undefined behavior. static uint8_t t; return v.empty() ? reinterpret_cast(&t) : &v.front(); } /// @endcond /// @addtogroup flatbuffers_cpp_api /// @{ /// @class FlatBufferBuilder /// @brief Helper class to hold data needed in creation of a FlatBuffer. /// To serialize data, you typically call one of the `Create*()` functions in /// the generated code, which in turn call a sequence of `StartTable`/ /// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/ /// `CreateVector` functions. Do this is depth-first order to build up a tree to /// the root. `Finish()` wraps up the buffer ready for transport. class FlatBufferBuilder { public: /// @brief Default constructor for FlatBufferBuilder. /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults /// to `1024`. /// @param[in] allocator An `Allocator` to use. If null will use /// `DefaultAllocator`. /// @param[in] own_allocator Whether the builder/vector should own the /// allocator. Defaults to / `false`. /// @param[in] buffer_minalign Force the buffer to be aligned to the given /// minimum alignment upon reallocation. Only needed if you intend to store /// types with custom alignment AND you wish to read the buffer in-place /// directly after creation. explicit FlatBufferBuilder( size_t initial_size = 1024, Allocator *allocator = nullptr, bool own_allocator = false, size_t buffer_minalign = AlignOf()) : buf_(initial_size, allocator, own_allocator, buffer_minalign), num_field_loc(0), max_voffset_(0), nested(false), finished(false), minalign_(1), force_defaults_(false), dedup_vtables_(true), string_pool(nullptr) { EndianCheck(); } // clang-format off /// @brief Move constructor for FlatBufferBuilder. #if !defined(FLATBUFFERS_CPP98_STL) FlatBufferBuilder(FlatBufferBuilder &&other) #else FlatBufferBuilder(FlatBufferBuilder &other) #endif // #if !defined(FLATBUFFERS_CPP98_STL) : buf_(1024, nullptr, false, AlignOf()), num_field_loc(0), max_voffset_(0), nested(false), finished(false), minalign_(1), force_defaults_(false), dedup_vtables_(true), string_pool(nullptr) { EndianCheck(); // Default construct and swap idiom. // Lack of delegating constructors in vs2010 makes it more verbose than needed. Swap(other); } // clang-format on // clang-format off #if !defined(FLATBUFFERS_CPP98_STL) // clang-format on /// @brief Move assignment operator for FlatBufferBuilder. FlatBufferBuilder &operator=(FlatBufferBuilder &&other) { // Move construct a temporary and swap idiom FlatBufferBuilder temp(std::move(other)); Swap(temp); return *this; } // clang-format off #endif // defined(FLATBUFFERS_CPP98_STL) // clang-format on void Swap(FlatBufferBuilder &other) { using std::swap; buf_.swap(other.buf_); swap(num_field_loc, other.num_field_loc); swap(max_voffset_, other.max_voffset_); swap(nested, other.nested); swap(finished, other.finished); swap(minalign_, other.minalign_); swap(force_defaults_, other.force_defaults_); swap(dedup_vtables_, other.dedup_vtables_); swap(string_pool, other.string_pool); } ~FlatBufferBuilder() { if (string_pool) delete string_pool; } void Reset() { Clear(); // clear builder state buf_.reset(); // deallocate buffer } /// @brief Reset all the state in this FlatBufferBuilder so it can be reused /// to construct another buffer. void Clear() { ClearOffsets(); buf_.clear(); nested = false; finished = false; minalign_ = 1; if (string_pool) string_pool->clear(); } /// @brief The current size of the serialized buffer, counting from the end. /// @return Returns an `uoffset_t` with the current size of the buffer. uoffset_t GetSize() const { return buf_.size(); } /// @brief Get the serialized buffer (after you call `Finish()`). /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the /// buffer. uint8_t *GetBufferPointer() const { Finished(); return buf_.data(); } /// @brief Get a pointer to an unfinished buffer. /// @return Returns a `uint8_t` pointer to the unfinished buffer. uint8_t *GetCurrentBufferPointer() const { return buf_.data(); } /// @brief Get the released pointer to the serialized buffer. /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards! /// @return A `FlatBuffer` that owns the buffer and its allocator and /// behaves similar to a `unique_ptr` with a deleter. FLATBUFFERS_ATTRIBUTE(deprecated("use Release() instead")) DetachedBuffer ReleaseBufferPointer() { Finished(); return buf_.release(); } /// @brief Get the released DetachedBuffer. /// @return A `DetachedBuffer` that owns the buffer and its allocator. DetachedBuffer Release() { Finished(); return buf_.release(); } /// @brief Get the released pointer to the serialized buffer. /// @param size The size of the memory block containing /// the serialized `FlatBuffer`. /// @param offset The offset from the released pointer where the finished /// `FlatBuffer` starts. /// @return A raw pointer to the start of the memory block containing /// the serialized `FlatBuffer`. /// @remark If the allocator is owned, it gets deleted when the destructor is /// called.. uint8_t *ReleaseRaw(size_t &size, size_t &offset) { Finished(); return buf_.release_raw(size, offset); } /// @brief get the minimum alignment this buffer needs to be accessed /// properly. This is only known once all elements have been written (after /// you call Finish()). You can use this information if you need to embed /// a FlatBuffer in some other buffer, such that you can later read it /// without first having to copy it into its own buffer. size_t GetBufferMinAlignment() { Finished(); return minalign_; } /// @cond FLATBUFFERS_INTERNAL void Finished() const { // If you get this assert, you're attempting to get access a buffer // which hasn't been finished yet. Be sure to call // FlatBufferBuilder::Finish with your root table. // If you really need to access an unfinished buffer, call // GetCurrentBufferPointer instead. FLATBUFFERS_ASSERT(finished); } /// @endcond /// @brief In order to save space, fields that are set to their default value /// don't get serialized into the buffer. /// @param[in] fd When set to `true`, always serializes default values that /// are set. Optional fields which are not set explicitly, will still not be /// serialized. void ForceDefaults(bool fd) { force_defaults_ = fd; } /// @brief By default vtables are deduped in order to save space. /// @param[in] dedup When set to `true`, dedup vtables. void DedupVtables(bool dedup) { dedup_vtables_ = dedup; } /// @cond FLATBUFFERS_INTERNAL void Pad(size_t num_bytes) { buf_.fill(num_bytes); } void TrackMinAlign(size_t elem_size) { if (elem_size > minalign_) minalign_ = elem_size; } void Align(size_t elem_size) { TrackMinAlign(elem_size); buf_.fill(PaddingBytes(buf_.size(), elem_size)); } void PushFlatBuffer(const uint8_t *bytes, size_t size) { PushBytes(bytes, size); finished = true; } void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); } void PopBytes(size_t amount) { buf_.pop(amount); } template void AssertScalarT() { // The code assumes power of 2 sizes and endian-swap-ability. static_assert(flatbuffers::is_scalar::value, "T must be a scalar type"); } // Write a single aligned scalar to the buffer template uoffset_t PushElement(T element) { AssertScalarT(); T litle_endian_element = EndianScalar(element); Align(sizeof(T)); buf_.push_small(litle_endian_element); return GetSize(); } template uoffset_t PushElement(Offset off) { // Special case for offsets: see ReferTo below. return PushElement(ReferTo(off.o)); } // When writing fields, we track where they are, so we can create correct // vtables later. void TrackField(voffset_t field, uoffset_t off) { FieldLoc fl = { off, field }; buf_.scratch_push_small(fl); num_field_loc++; max_voffset_ = (std::max)(max_voffset_, field); } // Like PushElement, but additionally tracks the field this represents. template void AddElement(voffset_t field, T e, T def) { // We don't serialize values equal to the default. if (IsTheSameAs(e, def) && !force_defaults_) return; auto off = PushElement(e); TrackField(field, off); } template void AddOffset(voffset_t field, Offset off) { if (off.IsNull()) return; // Don't store. AddElement(field, ReferTo(off.o), static_cast(0)); } template void AddStruct(voffset_t field, const T *structptr) { if (!structptr) return; // Default, don't store. Align(AlignOf()); buf_.push_small(*structptr); TrackField(field, GetSize()); } void AddStructOffset(voffset_t field, uoffset_t off) { TrackField(field, off); } // Offsets initially are relative to the end of the buffer (downwards). // This function converts them to be relative to the current location // in the buffer (when stored here), pointing upwards. uoffset_t ReferTo(uoffset_t off) { // Align to ensure GetSize() below is correct. Align(sizeof(uoffset_t)); // Offset must refer to something already in buffer. FLATBUFFERS_ASSERT(off && off <= GetSize()); return GetSize() - off + static_cast(sizeof(uoffset_t)); } void NotNested() { // If you hit this, you're trying to construct a Table/Vector/String // during the construction of its parent table (between the MyTableBuilder // and table.Finish(). // Move the creation of these sub-objects to above the MyTableBuilder to // not get this assert. // Ignoring this assert may appear to work in simple cases, but the reason // it is here is that storing objects in-line may cause vtable offsets // to not fit anymore. It also leads to vtable duplication. FLATBUFFERS_ASSERT(!nested); // If you hit this, fields were added outside the scope of a table. FLATBUFFERS_ASSERT(!num_field_loc); } // From generated code (or from the parser), we call StartTable/EndTable // with a sequence of AddElement calls in between. uoffset_t StartTable() { NotNested(); nested = true; return GetSize(); } // This finishes one serialized object by generating the vtable if it's a // table, comparing it against existing vtables, and writing the // resulting vtable offset. uoffset_t EndTable(uoffset_t start) { // If you get this assert, a corresponding StartTable wasn't called. FLATBUFFERS_ASSERT(nested); // Write the vtable offset, which is the start of any Table. // We fill it's value later. auto vtableoffsetloc = PushElement(0); // Write a vtable, which consists entirely of voffset_t elements. // It starts with the number of offsets, followed by a type id, followed // by the offsets themselves. In reverse: // Include space for the last offset and ensure empty tables have a // minimum size. max_voffset_ = (std::max)(static_cast(max_voffset_ + sizeof(voffset_t)), FieldIndexToOffset(0)); buf_.fill_big(max_voffset_); auto table_object_size = vtableoffsetloc - start; // Vtable use 16bit offsets. FLATBUFFERS_ASSERT(table_object_size < 0x10000); WriteScalar(buf_.data() + sizeof(voffset_t), static_cast(table_object_size)); WriteScalar(buf_.data(), max_voffset_); // Write the offsets into the table for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc); it < buf_.scratch_end(); it += sizeof(FieldLoc)) { auto field_location = reinterpret_cast(it); auto pos = static_cast(vtableoffsetloc - field_location->off); // If this asserts, it means you've set a field twice. FLATBUFFERS_ASSERT( !ReadScalar(buf_.data() + field_location->id)); WriteScalar(buf_.data() + field_location->id, pos); } ClearOffsets(); auto vt1 = reinterpret_cast(buf_.data()); auto vt1_size = ReadScalar(vt1); auto vt_use = GetSize(); // See if we already have generated a vtable with this exact same // layout before. If so, make it point to the old one, remove this one. if (dedup_vtables_) { for (auto it = buf_.scratch_data(); it < buf_.scratch_end(); it += sizeof(uoffset_t)) { auto vt_offset_ptr = reinterpret_cast(it); auto vt2 = reinterpret_cast(buf_.data_at(*vt_offset_ptr)); auto vt2_size = ReadScalar(vt2); if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue; vt_use = *vt_offset_ptr; buf_.pop(GetSize() - vtableoffsetloc); break; } } // If this is a new vtable, remember it. if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); } // Fill the vtable offset we created above. // The offset points from the beginning of the object to where the // vtable is stored. // Offsets default direction is downward in memory for future format // flexibility (storing all vtables at the start of the file). WriteScalar(buf_.data_at(vtableoffsetloc), static_cast(vt_use) - static_cast(vtableoffsetloc)); nested = false; return vtableoffsetloc; } FLATBUFFERS_ATTRIBUTE(deprecated("call the version above instead")) uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) { return EndTable(start); } // This checks a required field has been set in a given table that has // just been constructed. template void Required(Offset table, voffset_t field); uoffset_t StartStruct(size_t alignment) { Align(alignment); return GetSize(); } uoffset_t EndStruct() { return GetSize(); } void ClearOffsets() { buf_.scratch_pop(num_field_loc * sizeof(FieldLoc)); num_field_loc = 0; max_voffset_ = 0; } // Aligns such that when "len" bytes are written, an object can be written // after it with "alignment" without padding. void PreAlign(size_t len, size_t alignment) { TrackMinAlign(alignment); buf_.fill(PaddingBytes(GetSize() + len, alignment)); } template void PreAlign(size_t len) { AssertScalarT(); PreAlign(len, sizeof(T)); } /// @endcond /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str, size_t len) { NotNested(); PreAlign(len + 1); // Always 0-terminated. buf_.fill(1); PushBytes(reinterpret_cast(str), len); PushElement(static_cast(len)); return Offset(GetSize()); } /// @brief Store a string in the buffer, which is null-terminated. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const char *str) { return CreateString(str, strlen(str)); } /// @brief Store a string in the buffer, which is null-terminated. /// @param[in] str A char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(char *str) { return CreateString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(const std::string &str) { return CreateString(str.c_str(), str.length()); } // clang-format off #ifdef FLATBUFFERS_HAS_STRING_VIEW /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const string_view to copy in to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateString(flatbuffers::string_view str) { return CreateString(str.data(), str.size()); } #endif // FLATBUFFERS_HAS_STRING_VIEW // clang-format on /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateString(const String *str) { return str ? CreateString(str->c_str(), str->size()) : 0; } /// @brief Store a string in the buffer, which can contain any binary data. /// @param[in] str A const reference to a std::string like type with support /// of T::c_str() and T::length() to store in the buffer. /// @return Returns the offset in the buffer where the string starts. template Offset CreateString(const T &str) { return CreateString(str.c_str(), str.length()); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const char pointer to the data to be stored as a string. /// @param[in] len The number of bytes that should be stored from `str`. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str, size_t len) { if (!string_pool) string_pool = new StringOffsetMap(StringOffsetCompare(buf_)); auto size_before_string = buf_.size(); // Must first serialize the string, since the set is all offsets into // buffer. auto off = CreateString(str, len); auto it = string_pool->find(off); // If it exists we reuse existing serialized data! if (it != string_pool->end()) { // We can remove the string we serialized. buf_.pop(buf_.size() - size_before_string); return *it; } // Record this string for future use. string_pool->insert(off); return off; } /// @brief Store a string in the buffer, which null-terminated. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const char pointer to a C-string to add to the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const char *str) { return CreateSharedString(str, strlen(str)); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const reference to a std::string to store in the buffer. /// @return Returns the offset in the buffer where the string starts. Offset CreateSharedString(const std::string &str) { return CreateSharedString(str.c_str(), str.length()); } /// @brief Store a string in the buffer, which can contain any binary data. /// If a string with this exact contents has already been serialized before, /// instead simply returns the offset of the existing string. /// @param[in] str A const pointer to a `String` struct to add to the buffer. /// @return Returns the offset in the buffer where the string starts Offset CreateSharedString(const String *str) { return CreateSharedString(str->c_str(), str->size()); } /// @cond FLATBUFFERS_INTERNAL uoffset_t EndVector(size_t len) { FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector. nested = false; return PushElement(static_cast(len)); } void StartVector(size_t len, size_t elemsize) { NotNested(); nested = true; PreAlign(len * elemsize); PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t. } // Call this right before StartVector/CreateVector if you want to force the // alignment to be something different than what the element size would // normally dictate. // This is useful when storing a nested_flatbuffer in a vector of bytes, // or when storing SIMD floats, etc. void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) { PreAlign(len * elemsize, alignment); } // Similar to ForceVectorAlignment but for String fields. void ForceStringAlignment(size_t len, size_t alignment) { PreAlign((len + 1) * sizeof(char), alignment); } /// @endcond /// @brief Serialize an array into a FlatBuffer `vector`. /// @tparam T The data type of the array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const T *v, size_t len) { // If this assert hits, you're specifying a template argument that is // causing the wrong overload to be selected, remove it. AssertScalarT(); StartVector(len, sizeof(T)); // clang-format off #if FLATBUFFERS_LITTLEENDIAN PushBytes(reinterpret_cast(v), len * sizeof(T)); #else if (sizeof(T) == 1) { PushBytes(reinterpret_cast(v), len); } else { for (auto i = len; i > 0; ) { PushElement(v[--i]); } } #endif // clang-format on return Offset>(EndVector(len)); } template Offset>> CreateVector(const Offset *v, size_t len) { StartVector(len, sizeof(Offset)); for (auto i = len; i > 0;) { PushElement(v[--i]); } return Offset>>(EndVector(len)); } /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` elements. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(const std::vector &v) { return CreateVector(data(v), v.size()); } // vector may be implemented using a bit-set, so we can't access it as // an array. Instead, read elements manually. // Background: https://isocpp.org/blog/2012/11/on-vectorbool Offset> CreateVector(const std::vector &v) { StartVector(v.size(), sizeof(uint8_t)); for (auto i = v.size(); i > 0;) { PushElement(static_cast(v[--i])); } return Offset>(EndVector(v.size())); } // clang-format off #ifndef FLATBUFFERS_CPP98_STL /// @brief Serialize values returned by a function into a FlatBuffer `vector`. /// This is a convenience function that takes care of iteration for you. /// @tparam T The data type of the `std::vector` elements. /// @param f A function that takes the current iteration 0..vector_size-1 and /// returns any type that you can construct a FlatBuffers vector out of. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(size_t vector_size, const std::function &f) { std::vector elems(vector_size); for (size_t i = 0; i < vector_size; i++) elems[i] = f(i); return CreateVector(elems); } #endif // clang-format on /// @brief Serialize values returned by a function into a FlatBuffer `vector`. /// This is a convenience function that takes care of iteration for you. /// @tparam T The data type of the `std::vector` elements. /// @param f A function that takes the current iteration 0..vector_size-1, /// and the state parameter returning any type that you can construct a /// FlatBuffers vector out of. /// @param state State passed to f. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVector(size_t vector_size, F f, S *state) { std::vector elems(vector_size); for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state); return CreateVector(elems); } /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. /// This is a convenience function for a common case. /// @param v A const reference to the `std::vector` to serialize into the /// buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. Offset>> CreateVectorOfStrings( const std::vector &v) { std::vector> offsets(v.size()); for (size_t i = 0; i < v.size(); i++) offsets[i] = CreateString(v[i]); return CreateVector(offsets); } /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfStructs(const T *v, size_t len) { StartVector(len * sizeof(T) / AlignOf(), AlignOf()); PushBytes(reinterpret_cast(v), sizeof(T) * len); return Offset>(EndVector(len)); } /// @brief Serialize an array of native structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @tparam S The data type of the native struct array elements. /// @param[in] v A pointer to the array of type `S` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfNativeStructs(const S *v, size_t len) { extern T Pack(const S &); std::vector vv(len); std::transform(v, v + len, vv.begin(), Pack); return CreateVectorOfStructs(data(vv), vv.size()); } // clang-format off #ifndef FLATBUFFERS_CPP98_STL /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] filler A function that takes the current iteration 0..vector_size-1 /// and a pointer to the struct that must be filled. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. /// This is mostly useful when flatbuffers are generated with mutation /// accessors. template Offset> CreateVectorOfStructs( size_t vector_size, const std::function &filler) { T* structs = StartVectorOfStructs(vector_size); for (size_t i = 0; i < vector_size; i++) { filler(i, structs); structs++; } return EndVectorOfStructs(vector_size); } #endif // clang-format on /// @brief Serialize an array of structs into a FlatBuffer `vector`. /// @tparam T The data type of the struct array elements. /// @param[in] f A function that takes the current iteration 0..vector_size-1, /// a pointer to the struct that must be filled and the state argument. /// @param[in] state Arbitrary state to pass to f. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. /// This is mostly useful when flatbuffers are generated with mutation /// accessors. template Offset> CreateVectorOfStructs(size_t vector_size, F f, S *state) { T *structs = StartVectorOfStructs(vector_size); for (size_t i = 0; i < vector_size; i++) { f(i, structs, state); structs++; } return EndVectorOfStructs(vector_size); } /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfStructs( const std::vector &v) { return CreateVectorOfStructs(data(v), v.size()); } /// @brief Serialize a `std::vector` of native structs into a FlatBuffer /// `vector`. /// @tparam T The data type of the `std::vector` struct elements. /// @tparam S The data type of the `std::vector` native struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfNativeStructs( const std::vector &v) { return CreateVectorOfNativeStructs(data(v), v.size()); } /// @cond FLATBUFFERS_INTERNAL template struct StructKeyComparator { bool operator()(const T &a, const T &b) const { return a.KeyCompareLessThan(&b); } private: StructKeyComparator &operator=(const StructKeyComparator &); }; /// @endcond /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector` /// in sorted order. /// @tparam T The data type of the `std::vector` struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedStructs(std::vector *v) { return CreateVectorOfSortedStructs(data(*v), v->size()); } /// @brief Serialize a `std::vector` of native structs into a FlatBuffer /// `vector` in sorted order. /// @tparam T The data type of the `std::vector` struct elements. /// @tparam S The data type of the `std::vector` native struct elements. /// @param[in] v A const reference to the `std::vector` of structs to /// serialize into the buffer as a `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedNativeStructs( std::vector *v) { return CreateVectorOfSortedNativeStructs(data(*v), v->size()); } /// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted /// order. /// @tparam T The data type of the struct array elements. /// @param[in] v A pointer to the array of type `T` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedStructs(T *v, size_t len) { std::sort(v, v + len, StructKeyComparator()); return CreateVectorOfStructs(v, len); } /// @brief Serialize an array of native structs into a FlatBuffer `vector` in /// sorted order. /// @tparam T The data type of the struct array elements. /// @tparam S The data type of the native struct array elements. /// @param[in] v A pointer to the array of type `S` to serialize into the /// buffer as a `vector`. /// @param[in] len The number of elements to serialize. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset> CreateVectorOfSortedNativeStructs(S *v, size_t len) { extern T Pack(const S &); typedef T (*Pack_t)(const S &); std::vector vv(len); std::transform(v, v + len, vv.begin(), static_cast(Pack)); return CreateVectorOfSortedStructs(vv, len); } /// @cond FLATBUFFERS_INTERNAL template struct TableKeyComparator { TableKeyComparator(vector_downward &buf) : buf_(buf) {} TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {} bool operator()(const Offset &a, const Offset &b) const { auto table_a = reinterpret_cast(buf_.data_at(a.o)); auto table_b = reinterpret_cast(buf_.data_at(b.o)); return table_a->KeyCompareLessThan(table_b); } vector_downward &buf_; private: TableKeyComparator &operator=(const TableKeyComparator &other) { buf_ = other.buf_; return *this; } }; /// @endcond /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @param[in] len The number of elements to store in the `vector`. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfSortedTables(Offset *v, size_t len) { std::sort(v, v + len, TableKeyComparator(buf_)); return CreateVector(v, len); } /// @brief Serialize an array of `table` offsets as a `vector` in the buffer /// in sorted order. /// @tparam T The data type that the offset refers to. /// @param[in] v An array of type `Offset` that contains the `table` /// offsets to store in the buffer in sorted order. /// @return Returns a typed `Offset` into the serialized data indicating /// where the vector is stored. template Offset>> CreateVectorOfSortedTables( std::vector> *v) { return CreateVectorOfSortedTables(data(*v), v->size()); } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @param[in] len The number of elements to store in the `vector`. /// @param[in] elemsize The size of each element in the `vector`. /// @param[out] buf A pointer to a `uint8_t` pointer that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. uoffset_t CreateUninitializedVector(size_t len, size_t elemsize, uint8_t **buf) { NotNested(); StartVector(len, elemsize); buf_.make_space(len * elemsize); auto vec_start = GetSize(); auto vec_end = EndVector(len); *buf = buf_.data_at(vec_start); return vec_end; } /// @brief Specialized version of `CreateVector` for non-copying use cases. /// Write the data any time later to the returned buffer pointer `buf`. /// @tparam T The data type of the data that will be stored in the buffer /// as a `vector`. /// @param[in] len The number of elements to store in the `vector`. /// @param[out] buf A pointer to a pointer of type `T` that can be /// written to at a later time to serialize the data into a `vector` /// in the buffer. template Offset> CreateUninitializedVector(size_t len, T **buf) { AssertScalarT(); return CreateUninitializedVector(len, sizeof(T), reinterpret_cast(buf)); } template Offset> CreateUninitializedVectorOfStructs(size_t len, T **buf) { return CreateUninitializedVector(len, sizeof(T), reinterpret_cast(buf)); } // @brief Create a vector of scalar type T given as input a vector of scalar // type U, useful with e.g. pre "enum class" enums, or any existing scalar // data of the wrong type. template Offset> CreateVectorScalarCast(const U *v, size_t len) { AssertScalarT(); AssertScalarT(); StartVector(len, sizeof(T)); for (auto i = len; i > 0;) { PushElement(static_cast(v[--i])); } return Offset>(EndVector(len)); } /// @brief Write a struct by itself, typically to be part of a union. template Offset CreateStruct(const T &structobj) { NotNested(); Align(AlignOf()); buf_.push_small(structobj); return Offset(GetSize()); } /// @brief The length of a FlatBuffer file header. static const size_t kFileIdentifierLength = 4; /// @brief Finish serializing a buffer by writing the root offset. /// @param[in] file_identifier If a `file_identifier` is given, the buffer /// will be prefixed with a standard FlatBuffers file header. template void Finish(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, false); } /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the /// buffer following the size field). These buffers are NOT compatible /// with standard buffers created by Finish, i.e. you can't call GetRoot /// on them, you have to use GetSizePrefixedRoot instead. /// All >32 bit quantities in this buffer will be aligned when the whole /// size pre-fixed buffer is aligned. /// These kinds of buffers are useful for creating a stream of FlatBuffers. template void FinishSizePrefixed(Offset root, const char *file_identifier = nullptr) { Finish(root.o, file_identifier, true); } void SwapBufAllocator(FlatBufferBuilder &other) { buf_.swap_allocator(other.buf_); } protected: // You shouldn't really be copying instances of this class. FlatBufferBuilder(const FlatBufferBuilder &); FlatBufferBuilder &operator=(const FlatBufferBuilder &); void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) { NotNested(); buf_.clear_scratch(); // This will cause the whole buffer to be aligned. PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0), minalign_); if (file_identifier) { FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength); PushBytes(reinterpret_cast(file_identifier), kFileIdentifierLength); } PushElement(ReferTo(root)); // Location of root. if (size_prefix) { PushElement(GetSize()); } finished = true; } struct FieldLoc { uoffset_t off; voffset_t id; }; vector_downward buf_; // Accumulating offsets of table members while it is being built. // We store these in the scratch pad of buf_, after the vtable offsets. uoffset_t num_field_loc; // Track how much of the vtable is in use, so we can output the most compact // possible vtable. voffset_t max_voffset_; // Ensure objects are not nested. bool nested; // Ensure the buffer is finished before it is being accessed. bool finished; size_t minalign_; bool force_defaults_; // Serialize values equal to their defaults anyway. bool dedup_vtables_; struct StringOffsetCompare { StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {} bool operator()(const Offset &a, const Offset &b) const { auto stra = reinterpret_cast(buf_->data_at(a.o)); auto strb = reinterpret_cast(buf_->data_at(b.o)); return StringLessThan(stra->data(), stra->size(), strb->data(), strb->size()); } const vector_downward *buf_; }; // For use with CreateSharedString. Instantiated on first use only. typedef std::set, StringOffsetCompare> StringOffsetMap; StringOffsetMap *string_pool; private: // Allocates space for a vector of structures. // Must be completed with EndVectorOfStructs(). template T *StartVectorOfStructs(size_t vector_size) { StartVector(vector_size * sizeof(T) / AlignOf(), AlignOf()); return reinterpret_cast(buf_.make_space(vector_size * sizeof(T))); } // End the vector of structues in the flatbuffers. // Vector should have previously be started with StartVectorOfStructs(). template Offset> EndVectorOfStructs(size_t vector_size) { return Offset>(EndVector(vector_size)); } }; /// @} /// @cond FLATBUFFERS_INTERNAL // Helpers to get a typed pointer to the root object contained in the buffer. template T *GetMutableRoot(void *buf) { EndianCheck(); return reinterpret_cast( reinterpret_cast(buf) + EndianScalar(*reinterpret_cast(buf))); } template const T *GetRoot(const void *buf) { return GetMutableRoot(const_cast(buf)); } template const T *GetSizePrefixedRoot(const void *buf) { return GetRoot(reinterpret_cast(buf) + sizeof(uoffset_t)); } /// Helpers to get a typed pointer to objects that are currently being built. /// @warning Creating new objects will lead to reallocations and invalidates /// the pointer! template T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return reinterpret_cast(fbb.GetCurrentBufferPointer() + fbb.GetSize() - offset.o); } template const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset offset) { return GetMutableTemporaryPointer(fbb, offset); } /// @brief Get a pointer to the the file_identifier section of the buffer. /// @return Returns a const char pointer to the start of the file_identifier /// characters in the buffer. The returned char * has length /// 'flatbuffers::FlatBufferBuilder::kFileIdentifierLength'. /// This function is UNDEFINED for FlatBuffers whose schema does not include /// a file_identifier (likely points at padding or the start of a the root /// vtable). inline const char *GetBufferIdentifier(const void *buf, bool size_prefixed = false) { return reinterpret_cast(buf) + ((size_prefixed) ? 2 * sizeof(uoffset_t) : sizeof(uoffset_t)); } // Helper to see if the identifier in a buffer has the expected value. inline bool BufferHasIdentifier(const void *buf, const char *identifier, bool size_prefixed = false) { return strncmp(GetBufferIdentifier(buf, size_prefixed), identifier, FlatBufferBuilder::kFileIdentifierLength) == 0; } // Helper class to verify the integrity of a FlatBuffer class Verifier FLATBUFFERS_FINAL_CLASS { public: Verifier(const uint8_t *buf, size_t buf_len, uoffset_t _max_depth = 64, uoffset_t _max_tables = 1000000, bool _check_alignment = true) : buf_(buf), size_(buf_len), depth_(0), max_depth_(_max_depth), num_tables_(0), max_tables_(_max_tables), upper_bound_(0), check_alignment_(_check_alignment) { FLATBUFFERS_ASSERT(size_ < FLATBUFFERS_MAX_BUFFER_SIZE); } // Central location where any verification failures register. bool Check(bool ok) const { // clang-format off #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE FLATBUFFERS_ASSERT(ok); #endif #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE if (!ok) upper_bound_ = 0; #endif // clang-format on return ok; } // Verify any range within the buffer. bool Verify(size_t elem, size_t elem_len) const { // clang-format off #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE auto upper_bound = elem + elem_len; if (upper_bound_ < upper_bound) upper_bound_ = upper_bound; #endif // clang-format on return Check(elem_len < size_ && elem <= size_ - elem_len); } template bool VerifyAlignment(size_t elem) const { return Check((elem & (sizeof(T) - 1)) == 0 || !check_alignment_); } // Verify a range indicated by sizeof(T). template bool Verify(size_t elem) const { return VerifyAlignment(elem) && Verify(elem, sizeof(T)); } bool VerifyFromPointer(const uint8_t *p, size_t len) { auto o = static_cast(p - buf_); return Verify(o, len); } // Verify relative to a known-good base pointer. bool Verify(const uint8_t *base, voffset_t elem_off, size_t elem_len) const { return Verify(static_cast(base - buf_) + elem_off, elem_len); } template bool Verify(const uint8_t *base, voffset_t elem_off) const { return Verify(static_cast(base - buf_) + elem_off, sizeof(T)); } // Verify a pointer (may be NULL) of a table type. template bool VerifyTable(const T *table) { return !table || table->Verify(*this); } // Verify a pointer (may be NULL) of any vector type. template bool VerifyVector(const Vector *vec) const { return !vec || VerifyVectorOrString(reinterpret_cast(vec), sizeof(T)); } // Verify a pointer (may be NULL) of a vector to struct. template bool VerifyVector(const Vector *vec) const { return VerifyVector(reinterpret_cast *>(vec)); } // Verify a pointer (may be NULL) to string. bool VerifyString(const String *str) const { size_t end; return !str || (VerifyVectorOrString(reinterpret_cast(str), 1, &end) && Verify(end, 1) && // Must have terminator Check(buf_[end] == '\0')); // Terminating byte must be 0. } // Common code between vectors and strings. bool VerifyVectorOrString(const uint8_t *vec, size_t elem_size, size_t *end = nullptr) const { auto veco = static_cast(vec - buf_); // Check we can read the size field. if (!Verify(veco)) return false; // Check the whole array. If this is a string, the byte past the array // must be 0. auto size = ReadScalar(vec); auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size; if (!Check(size < max_elems)) return false; // Protect against byte_size overflowing. auto byte_size = sizeof(size) + elem_size * size; if (end) *end = veco + byte_size; return Verify(veco, byte_size); } // Special case for string contents, after the above has been called. bool VerifyVectorOfStrings(const Vector> *vec) const { if (vec) { for (uoffset_t i = 0; i < vec->size(); i++) { if (!VerifyString(vec->Get(i))) return false; } } return true; } // Special case for table contents, after the above has been called. template bool VerifyVectorOfTables(const Vector> *vec) { if (vec) { for (uoffset_t i = 0; i < vec->size(); i++) { if (!vec->Get(i)->Verify(*this)) return false; } } return true; } __supress_ubsan__("unsigned-integer-overflow") bool VerifyTableStart( const uint8_t *table) { // Check the vtable offset. auto tableo = static_cast(table - buf_); if (!Verify(tableo)) return false; // This offset may be signed, but doing the subtraction unsigned always // gives the result we want. auto vtableo = tableo - static_cast(ReadScalar(table)); // Check the vtable size field, then check vtable fits in its entirety. return VerifyComplexity() && Verify(vtableo) && VerifyAlignment(ReadScalar(buf_ + vtableo)) && Verify(vtableo, ReadScalar(buf_ + vtableo)); } template bool VerifyBufferFromStart(const char *identifier, size_t start) { if (identifier && (size_ < 2 * sizeof(flatbuffers::uoffset_t) || !BufferHasIdentifier(buf_ + start, identifier))) { return false; } // Call T::Verify, which must be in the generated code for this type. auto o = VerifyOffset(start); return o && reinterpret_cast(buf_ + start + o)->Verify(*this) // clang-format off #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE && GetComputedSize() #endif ; // clang-format on } // Verify this whole buffer, starting with root type T. template bool VerifyBuffer() { return VerifyBuffer(nullptr); } template bool VerifyBuffer(const char *identifier) { return VerifyBufferFromStart(identifier, 0); } template bool VerifySizePrefixedBuffer(const char *identifier) { return Verify(0U) && ReadScalar(buf_) == size_ - sizeof(uoffset_t) && VerifyBufferFromStart(identifier, sizeof(uoffset_t)); } uoffset_t VerifyOffset(size_t start) const { if (!Verify(start)) return 0; auto o = ReadScalar(buf_ + start); // May not point to itself. if (!Check(o != 0)) return 0; // Can't wrap around / buffers are max 2GB. if (!Check(static_cast(o) >= 0)) return 0; // Must be inside the buffer to create a pointer from it (pointer outside // buffer is UB). if (!Verify(start + o, 1)) return 0; return o; } uoffset_t VerifyOffset(const uint8_t *base, voffset_t start) const { return VerifyOffset(static_cast(base - buf_) + start); } // Called at the start of a table to increase counters measuring data // structure depth and amount, and possibly bails out with false if // limits set by the constructor have been hit. Needs to be balanced // with EndTable(). bool VerifyComplexity() { depth_++; num_tables_++; return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_); } // Called at the end of a table to pop the depth count. bool EndTable() { depth_--; return true; } // Returns the message size in bytes size_t GetComputedSize() const { // clang-format off #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE uintptr_t size = upper_bound_; // Align the size to uoffset_t size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1); return (size > size_) ? 0 : size; #else // Must turn on FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE for this to work. (void)upper_bound_; FLATBUFFERS_ASSERT(false); return 0; #endif // clang-format on } private: const uint8_t *buf_; size_t size_; uoffset_t depth_; uoffset_t max_depth_; uoffset_t num_tables_; uoffset_t max_tables_; mutable size_t upper_bound_; bool check_alignment_; }; // Convenient way to bundle a buffer and its length, to pass it around // typed by its root. // A BufferRef does not own its buffer. struct BufferRefBase {}; // for std::is_base_of template struct BufferRef : BufferRefBase { BufferRef() : buf(nullptr), len(0), must_free(false) {} BufferRef(uint8_t *_buf, uoffset_t _len) : buf(_buf), len(_len), must_free(false) {} ~BufferRef() { if (must_free) free(buf); } const T *GetRoot() const { return flatbuffers::GetRoot(buf); } bool Verify() { Verifier verifier(buf, len); return verifier.VerifyBuffer(nullptr); } uint8_t *buf; uoffset_t len; bool must_free; }; // "structs" are flat structures that do not have an offset table, thus // always have all members present and do not support forwards/backwards // compatible extensions. class Struct FLATBUFFERS_FINAL_CLASS { public: template T GetField(uoffset_t o) const { return ReadScalar(&data_[o]); } template T GetStruct(uoffset_t o) const { return reinterpret_cast(&data_[o]); } const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; } uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; } private: // private constructor & copy constructor: you obtain instances of this // class by pointing to existing data only Struct(); Struct(const Struct &); Struct &operator=(const Struct &); uint8_t data_[1]; }; // "tables" use an offset table (possibly shared) that allows fields to be // omitted and added at will, but uses an extra indirection to read. class Table { public: const uint8_t *GetVTable() const { return data_ - ReadScalar(data_); } // This gets the field offset for any of the functions below it, or 0 // if the field was not present. voffset_t GetOptionalFieldOffset(voffset_t field) const { // The vtable offset is always at the start. auto vtable = GetVTable(); // The first element is the size of the vtable (fields + type id + itself). auto vtsize = ReadScalar(vtable); // If the field we're accessing is outside the vtable, we're reading older // data, so it's the same as if the offset was 0 (not present). return field < vtsize ? ReadScalar(vtable + field) : 0; } template T GetField(voffset_t field, T defaultval) const { auto field_offset = GetOptionalFieldOffset(field); return field_offset ? ReadScalar(data_ + field_offset) : defaultval; } template P GetPointer(voffset_t field) { auto field_offset = GetOptionalFieldOffset(field); auto p = data_ + field_offset; return field_offset ? reinterpret_cast

(p + ReadScalar(p)) : nullptr; } template P GetPointer(voffset_t field) const { return const_cast(this)->GetPointer

(field); } template P GetStruct(voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); auto p = const_cast(data_ + field_offset); return field_offset ? reinterpret_cast

(p) : nullptr; } template bool SetField(voffset_t field, T val, T def) { auto field_offset = GetOptionalFieldOffset(field); if (!field_offset) return IsTheSameAs(val, def); WriteScalar(data_ + field_offset, val); return true; } bool SetPointer(voffset_t field, const uint8_t *val) { auto field_offset = GetOptionalFieldOffset(field); if (!field_offset) return false; WriteScalar(data_ + field_offset, static_cast(val - (data_ + field_offset))); return true; } uint8_t *GetAddressOf(voffset_t field) { auto field_offset = GetOptionalFieldOffset(field); return field_offset ? data_ + field_offset : nullptr; } const uint8_t *GetAddressOf(voffset_t field) const { return const_cast

(this)->GetAddressOf(field); } bool CheckField(voffset_t field) const { return GetOptionalFieldOffset(field) != 0; } // Verify the vtable of this table. // Call this once per table, followed by VerifyField once per field. bool VerifyTableStart(Verifier &verifier) const { return verifier.VerifyTableStart(data_); } // Verify a particular field. template bool VerifyField(const Verifier &verifier, voffset_t field) const { // Calling GetOptionalFieldOffset should be safe now thanks to // VerifyTable(). auto field_offset = GetOptionalFieldOffset(field); // Check the actual field. return !field_offset || verifier.Verify(data_, field_offset); } // VerifyField for required fields. template bool VerifyFieldRequired(const Verifier &verifier, voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); return verifier.Check(field_offset != 0) && verifier.Verify(data_, field_offset); } // Versions for offsets. bool VerifyOffset(const Verifier &verifier, voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); return !field_offset || verifier.VerifyOffset(data_, field_offset); } bool VerifyOffsetRequired(const Verifier &verifier, voffset_t field) const { auto field_offset = GetOptionalFieldOffset(field); return verifier.Check(field_offset != 0) && verifier.VerifyOffset(data_, field_offset); } private: // private constructor & copy constructor: you obtain instances of this // class by pointing to existing data only Table(); Table(const Table &other); Table &operator=(const Table &); uint8_t data_[1]; }; template void FlatBufferBuilder::Required(Offset table, voffset_t field) { auto table_ptr = reinterpret_cast(buf_.data_at(table.o)); bool ok = table_ptr->GetOptionalFieldOffset(field) != 0; // If this fails, the caller will show what field needs to be set. FLATBUFFERS_ASSERT(ok); (void)ok; } /// @brief This can compute the start of a FlatBuffer from a root pointer, i.e. /// it is the opposite transformation of GetRoot(). /// This may be useful if you want to pass on a root and have the recipient /// delete the buffer afterwards. inline const uint8_t *GetBufferStartFromRootPointer(const void *root) { auto table = reinterpret_cast(root); auto vtable = table->GetVTable(); // Either the vtable is before the root or after the root. auto start = (std::min)(vtable, reinterpret_cast(root)); // Align to at least sizeof(uoffset_t). start = reinterpret_cast(reinterpret_cast(start) & ~(sizeof(uoffset_t) - 1)); // Additionally, there may be a file_identifier in the buffer, and the root // offset. The buffer may have been aligned to any size between // sizeof(uoffset_t) and FLATBUFFERS_MAX_ALIGNMENT (see "force_align"). // Sadly, the exact alignment is only known when constructing the buffer, // since it depends on the presence of values with said alignment properties. // So instead, we simply look at the next uoffset_t values (root, // file_identifier, and alignment padding) to see which points to the root. // None of the other values can "impersonate" the root since they will either // be 0 or four ASCII characters. static_assert(FlatBufferBuilder::kFileIdentifierLength == sizeof(uoffset_t), "file_identifier is assumed to be the same size as uoffset_t"); for (auto possible_roots = FLATBUFFERS_MAX_ALIGNMENT / sizeof(uoffset_t) + 1; possible_roots; possible_roots--) { start -= sizeof(uoffset_t); if (ReadScalar(start) + start == reinterpret_cast(root)) return start; } // We didn't find the root, either the "root" passed isn't really a root, // or the buffer is corrupt. // Assert, because calling this function with bad data may cause reads // outside of buffer boundaries. FLATBUFFERS_ASSERT(false); return nullptr; } /// @brief This return the prefixed size of a FlatBuffer. inline uoffset_t GetPrefixedSize(const uint8_t *buf) { return ReadScalar(buf); } // Base class for native objects (FlatBuffer data de-serialized into native // C++ data structures). // Contains no functionality, purely documentative. struct NativeTable {}; /// @brief Function types to be used with resolving hashes into objects and /// back again. The resolver gets a pointer to a field inside an object API /// object that is of the type specified in the schema using the attribute /// `cpp_type` (it is thus important whatever you write to this address /// matches that type). The value of this field is initially null, so you /// may choose to implement a delayed binding lookup using this function /// if you wish. The resolver does the opposite lookup, for when the object /// is being serialized again. typedef uint64_t hash_value_t; // clang-format off #ifdef FLATBUFFERS_CPP98_STL typedef void (*resolver_function_t)(void **pointer_adr, hash_value_t hash); typedef hash_value_t (*rehasher_function_t)(void *pointer); #else typedef std::function resolver_function_t; typedef std::function rehasher_function_t; #endif // clang-format on // Helper function to test if a field is present, using any of the field // enums in the generated code. // `table` must be a generated table type. Since this is a template parameter, // this is not typechecked to be a subclass of Table, so beware! // Note: this function will return false for fields equal to the default // value, since they're not stored in the buffer (unless force_defaults was // used). template bool IsFieldPresent(const T *table, typename T::FlatBuffersVTableOffset field) { // Cast, since Table is a private baseclass of any table types. return reinterpret_cast(table)->CheckField( static_cast(field)); } // Utility function for reverse lookups on the EnumNames*() functions // (in the generated C++ code) // names must be NULL terminated. inline int LookupEnum(const char **names, const char *name) { for (const char **p = names; *p; p++) if (!strcmp(*p, name)) return static_cast(p - names); return -1; } // These macros allow us to layout a struct with a guarantee that they'll end // up looking the same on different compilers and platforms. // It does this by disallowing the compiler to do any padding, and then // does padding itself by inserting extra padding fields that make every // element aligned to its own size. // Additionally, it manually sets the alignment of the struct as a whole, // which is typically its largest element, or a custom size set in the schema // by the force_align attribute. // These are used in the generated code only. // clang-format off #if defined(_MSC_VER) #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \ __pragma(pack(1)) \ struct __declspec(align(alignment)) #define FLATBUFFERS_STRUCT_END(name, size) \ __pragma(pack()) \ static_assert(sizeof(name) == size, "compiler breaks packing rules") #elif defined(__GNUC__) || defined(__clang__) || defined(__ICCARM__) #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \ _Pragma("pack(1)") \ struct __attribute__((aligned(alignment))) #define FLATBUFFERS_STRUCT_END(name, size) \ _Pragma("pack()") \ static_assert(sizeof(name) == size, "compiler breaks packing rules") #else #error Unknown compiler, please define structure alignment macros #endif // clang-format on // Minimal reflection via code generation. // Besides full-fat reflection (see reflection.h) and parsing/printing by // loading schemas (see idl.h), we can also have code generation for mimimal // reflection data which allows pretty-printing and other uses without needing // a schema or a parser. // Generate code with --reflect-types (types only) or --reflect-names (names // also) to enable. // See minireflect.h for utilities using this functionality. // These types are organized slightly differently as the ones in idl.h. enum SequenceType { ST_TABLE, ST_STRUCT, ST_UNION, ST_ENUM }; // Scalars have the same order as in idl.h // clang-format off #define FLATBUFFERS_GEN_ELEMENTARY_TYPES(ET) \ ET(ET_UTYPE) \ ET(ET_BOOL) \ ET(ET_CHAR) \ ET(ET_UCHAR) \ ET(ET_SHORT) \ ET(ET_USHORT) \ ET(ET_INT) \ ET(ET_UINT) \ ET(ET_LONG) \ ET(ET_ULONG) \ ET(ET_FLOAT) \ ET(ET_DOUBLE) \ ET(ET_STRING) \ ET(ET_SEQUENCE) // See SequenceType. enum ElementaryType { #define FLATBUFFERS_ET(E) E, FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET) #undef FLATBUFFERS_ET }; inline const char * const *ElementaryTypeNames() { static const char * const names[] = { #define FLATBUFFERS_ET(E) #E, FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET) #undef FLATBUFFERS_ET }; return names; } // clang-format on // Basic type info cost just 16bits per field! struct TypeCode { uint16_t base_type : 4; // ElementaryType uint16_t is_vector : 1; int16_t sequence_ref : 11; // Index into type_refs below, or -1 for none. }; static_assert(sizeof(TypeCode) == 2, "TypeCode"); struct TypeTable; // Signature of the static method present in each type. typedef const TypeTable *(*TypeFunction)(); struct TypeTable { SequenceType st; size_t num_elems; // of type_codes, values, names (but not type_refs). const TypeCode *type_codes; // num_elems count const TypeFunction *type_refs; // less than num_elems entries (see TypeCode). const int64_t *values; // Only set for non-consecutive enum/union or structs. const char *const *names; // Only set if compiled with --reflect-names. }; // String which identifies the current version of FlatBuffers. // flatbuffer_version_string is used by Google developers to identify which // applications uploaded to Google Play are using this library. This allows // the development team at Google to determine the popularity of the library. // How it works: Applications that are uploaded to the Google Play Store are // scanned for this version string. We track which applications are using it // to measure popularity. You are free to remove it (of course) but we would // appreciate if you left it in. // Weak linkage is culled by VS & doesn't work on cygwin. // clang-format off #if !defined(_WIN32) && !defined(__CYGWIN__) extern volatile __attribute__((weak)) const char *flatbuffer_version_string; volatile __attribute__((weak)) const char *flatbuffer_version_string = "FlatBuffers " FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "." FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION); #endif // !defined(_WIN32) && !defined(__CYGWIN__) #define FLATBUFFERS_DEFINE_BITMASK_OPERATORS(E, T)\ inline E operator | (E lhs, E rhs){\ return E(T(lhs) | T(rhs));\ }\ inline E operator & (E lhs, E rhs){\ return E(T(lhs) & T(rhs));\ }\ inline E operator ^ (E lhs, E rhs){\ return E(T(lhs) ^ T(rhs));\ }\ inline E operator ~ (E lhs){\ return E(~T(lhs));\ }\ inline E operator |= (E &lhs, E rhs){\ lhs = lhs | rhs;\ return lhs;\ }\ inline E operator &= (E &lhs, E rhs){\ lhs = lhs & rhs;\ return lhs;\ }\ inline E operator ^= (E &lhs, E rhs){\ lhs = lhs ^ rhs;\ return lhs;\ }\ inline bool operator !(E rhs) \ {\ return !bool(T(rhs)); \ } /// @endcond } // namespace flatbuffers // clang-format on #endif // FLATBUFFERS_H_