/* ** x86/x64 IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2013 Mike Pall. See Copyright Notice in luajit.h */ /* -- Guard handling ------------------------------------------------------ */ /* Generate an exit stub group at the bottom of the reserved MCode memory. */ static MCode *asm_exitstub_gen(ASMState *as, ExitNo group) { ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff; MCode *mxp = as->mcbot; MCode *mxpstart = mxp; if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop) asm_mclimit(as); /* Push low byte of exitno for each exit stub. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs; for (i = 1; i < EXITSTUBS_PER_GROUP; i++) { *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2); *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i); } /* Push the high byte of the exitno for each exit stub group. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8); /* Store DISPATCH at original stack slot 0. Account for the two push ops. */ *mxp++ = XI_MOVmi; *mxp++ = MODRM(XM_OFS8, 0, RID_ESP); *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP); *mxp++ = 2*sizeof(void *); *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4; /* Jump to exit handler which fills in the ExitState. */ *mxp++ = XI_JMP; mxp += 4; *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler); /* Commit the code for this group (even if assembly fails later on). */ lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; return mxpstart; } /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) lj_trace_err(as->J, LJ_TRERR_SNAPOV); for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++) if (as->J->exitstubgroup[i] == NULL) as->J->exitstubgroup[i] = asm_exitstub_gen(as, i); } /* Emit conditional branch to exit for guard. ** It's important to emit this *after* all registers have been allocated, ** because rematerializations may invalidate the flags. */ static void asm_guardcc(ASMState *as, int cc) { MCode *target = exitstub_addr(as->J, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *(int32_t *)(p+1) = jmprel(p+5, target); target = p; cc ^= 1; if (as->realign) { emit_sjcc(as, cc, target); return; } } emit_jcc(as, cc, target); } /* -- Memory operand fusion ----------------------------------------------- */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if a reference is a signed 32 bit constant. */ static int asm_isk32(ASMState *as, IRRef ref, int32_t *k) { if (irref_isk(ref)) { IRIns *ir = IR(ref); if (ir->o != IR_KINT64) { *k = ir->i; return 1; } else if (checki32((int64_t)ir_kint64(ir)->u64)) { *k = (int32_t)ir_kint64(ir)->u64; return 1; } } return 0; } /* Check if there's no conflicting instruction between curins and ref. ** Also avoid fusing loads if there are multiple references. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) { if (ir[i].o == conflict) return 0; /* Conflict found. */ else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref)) return 0; } return 1; /* Ok, no conflict. */ } /* Fuse array base into memory operand. */ static IRRef asm_fuseabase(ASMState *as, IRRef ref) { IRIns *irb = IR(ref); as->mrm.ofs = 0; if (irb->o == IR_FLOAD) { IRIns *ira = IR(irb->op1); lua_assert(irb->op2 == IRFL_TAB_ARRAY); /* We can avoid the FLOAD of t->array for colocated arrays. */ if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, irb->op1, IR_NEWREF, 1)) { as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */ return irb->op1; /* Table obj. */ } } else if (irb->o == IR_ADD && irref_isk(irb->op2)) { /* Fuse base offset (vararg load). */ as->mrm.ofs = IR(irb->op2)->i; return irb->op1; } return ref; /* Otherwise use the given array base. */ } /* Fuse array reference into memory operand. */ static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irx; lua_assert(ir->o == IR_AREF); as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow); irx = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += 8*irx->i; as->mrm.idx = RID_NONE; } else { rset_clear(allow, as->mrm.base); as->mrm.scale = XM_SCALE8; /* Fuse a constant ADD (e.g. t[i+1]) into the offset. ** Doesn't help much without ABCelim, but reduces register pressure. */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && ra_noreg(irx->r) && irx->o == IR_ADD && irref_isk(irx->op2)) { as->mrm.ofs += 8*IR(irx->op2)->i; as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow); } else { as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow); } } } /* Fuse array/hash/upvalue reference into memory operand. ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to ** pass the final allow mask, excluding any GPRs used for other inputs. ** In particular: 2-operand GPR instructions need to call ra_dest() first! */ static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { switch ((IROp)ir->o) { case IR_AREF: if (mayfuse(as, ref)) { asm_fusearef(as, ir, allow); return; } break; case IR_HREFK: if (mayfuse(as, ref)) { as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); as->mrm.idx = RID_NONE; return; } break; case IR_UREFC: if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv; as->mrm.ofs = ptr2addr(&uv->tv); as->mrm.base = as->mrm.idx = RID_NONE; return; } break; default: lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO || ir->o == IR_KKPTR); break; } } as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); as->mrm.ofs = 0; as->mrm.idx = RID_NONE; } /* Fuse FLOAD/FREF reference into memory operand. */ static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow) { lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF); as->mrm.ofs = field_ofs[ir->op2]; as->mrm.idx = RID_NONE; if (irref_isk(ir->op1)) { as->mrm.ofs += IR(ir->op1)->i; as->mrm.base = RID_NONE; } else { as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); } } /* Fuse string reference into memory operand. */ static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irr; lua_assert(ir->o == IR_STRREF); as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = sizeof(GCstr); if (irref_isk(ir->op1)) { as->mrm.ofs += IR(ir->op1)->i; } else { Reg r = ra_alloc1(as, ir->op1, allow); rset_clear(allow, r); as->mrm.base = (uint8_t)r; } irr = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += irr->i; } else { Reg r; /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) { as->mrm.ofs += IR(irr->op2)->i; r = ra_alloc1(as, irr->op1, allow); } else { r = ra_alloc1(as, ir->op2, allow); } if (as->mrm.base == RID_NONE) as->mrm.base = (uint8_t)r; else as->mrm.idx = (uint8_t)r; } } static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); as->mrm.idx = RID_NONE; if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { as->mrm.ofs = ir->i; as->mrm.base = RID_NONE; } else if (ir->o == IR_STRREF) { asm_fusestrref(as, ir, allow); } else { as->mrm.ofs = 0; if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) { /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */ IRIns *irx; IRRef idx; Reg r; if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */ ref = ir->op1; ir = IR(ref); if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r))) goto noadd; } as->mrm.scale = XM_SCALE1; idx = ir->op1; ref = ir->op2; irx = IR(idx); if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */ idx = ir->op2; ref = ir->op1; irx = IR(idx); } if (canfuse(as, irx) && ra_noreg(irx->r)) { if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) { /* Recognize idx<op1; as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6); } else if (irx->o == IR_ADD && irx->op1 == irx->op2) { /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */ idx = irx->op1; as->mrm.scale = XM_SCALE2; } } r = ra_alloc1(as, idx, allow); rset_clear(allow, r); as->mrm.idx = (uint8_t)r; } noadd: as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); } } /* Fuse load into memory operand. */ static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { if (allow != RSET_EMPTY) { /* Fast path. */ ra_noweak(as, ir->r); return ir->r; } fusespill: /* Force a spill if only memory operands are allowed (asm_x87load). */ as->mrm.base = RID_ESP; as->mrm.ofs = ra_spill(as, ir); as->mrm.idx = RID_NONE; return RID_MRM; } if (ir->o == IR_KNUM) { RegSet avail = as->freeset & ~as->modset & RSET_FPR; lua_assert(allow != RSET_EMPTY); if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */ as->mrm.ofs = ptr2addr(ir_knum(ir)); as->mrm.base = as->mrm.idx = RID_NONE; return RID_MRM; } } else if (mayfuse(as, ref)) { RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR; if (ir->o == IR_SLOAD) { if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) && noconflict(as, ref, IR_RETF, 0)) { as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow); as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0); as->mrm.idx = RID_NONE; return RID_MRM; } } else if (ir->o == IR_FLOAD) { /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */ if ((irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)) && noconflict(as, ref, IR_FSTORE, 0)) { asm_fusefref(as, ir, xallow); return RID_MRM; } } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) { if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_XLOAD) { /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp). ** Fusing unaligned memory operands is ok on x86 (except for SIMD types). */ if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) && noconflict(as, ref, IR_XSTORE, 0)) { asm_fusexref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_VLOAD) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } if (!(as->freeset & allow) && (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref))) goto fusespill; return ra_allocref(as, ref, allow); } #if LJ_64 /* Don't fuse a 32 bit load into a 64 bit operation. */ static Reg asm_fuseloadm(ASMState *as, IRRef ref, RegSet allow, int is64) { if (is64 && !irt_is64(IR(ref)->t)) return ra_alloc1(as, ref, allow); return asm_fuseload(as, ref, allow); } #else #define asm_fuseloadm(as, ref, allow, is64) asm_fuseload(as, (ref), (allow)) #endif /* -- Calls --------------------------------------------------------------- */ /* Count the required number of stack slots for a call. */ static int asm_count_call_slots(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t i, nargs = CCI_NARGS(ci); int nslots = 0; #if LJ_64 if (LJ_ABI_WIN) { nslots = (int)(nargs*2); /* Only matters for more than four args. */ } else { int ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots += 2; } } #else int ngpr = 0; if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL) ngpr = 2; else if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL) ngpr = 1; for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { nslots += irt_isnum(IR(args[i])->t) ? 2 : 1; } else { if (ngpr > 0) ngpr--; else nslots++; } #endif return nslots; } /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_NARGS(ci); int32_t ofs = STACKARG_OFS; #if LJ_64 uint32_t gprs = REGARG_GPRS; Reg fpr = REGARG_FIRSTFPR; #if !LJ_ABI_WIN MCode *patchnfpr = NULL; #endif #else uint32_t gprs = 0; if ((ci->flags & CCI_CC_MASK) != CCI_CC_CDECL) { if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL) gprs = (REGARG_GPRS & 31); else if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL) gprs = REGARG_GPRS; } #endif if ((void *)ci->func) emit_call(as, ci->func); #if LJ_64 if ((ci->flags & CCI_VARARG)) { /* Special handling for vararg calls. */ #if LJ_ABI_WIN for (n = 0; n < 4 && n < nargs; n++) { IRIns *ir = IR(args[n]); if (irt_isfp(ir->t)) /* Duplicate FPRs in GPRs. */ emit_rr(as, XO_MOVDto, (irt_isnum(ir->t) ? REX_64 : 0) | (fpr+n), ((gprs >> (n*5)) & 31)); /* Either MOVD or MOVQ. */ } #else patchnfpr = --as->mcp; /* Indicate number of used FPRs in register al. */ *--as->mcp = XI_MOVrib | RID_EAX; #endif } #endif for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); Reg r; #if LJ_64 && LJ_ABI_WIN /* Windows/x64 argument registers are strictly positional. */ r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31); fpr++; gprs >>= 5; #elif LJ_64 /* POSIX/x64 argument registers are used in order of appearance. */ if (irt_isfp(ir->t)) { r = fpr <= REGARG_LASTFPR ? fpr++ : 0; } else { r = gprs & 31; gprs >>= 5; } #else if (ref && irt_isfp(ir->t)) { r = 0; } else { r = gprs & 31; gprs >>= 5; if (!ref) continue; } #endif if (r) { /* Argument is in a register. */ if (r < RID_MAX_GPR && ref < ASMREF_TMP1) { #if LJ_64 if (ir->o == IR_KINT64) emit_loadu64(as, r, ir_kint64(ir)->u64); else #endif emit_loadi(as, r, ir->i); } else { lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */ if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); emit_movrr(as, ir, r, ir->r); } else { ra_allocref(as, ref, RID2RSET(r)); } } } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */ lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */ if (LJ_32 && (ofs & 4) && irref_isk(ref)) { /* Split stores for unaligned FP consts. */ emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo); emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi); } else { r = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs); } ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8; } else { /* Non-FP argument is on stack. */ if (LJ_32 && ref < ASMREF_TMP1) { emit_movmroi(as, RID_ESP, ofs, ir->i); } else { r = ra_alloc1(as, ref, RSET_GPR); emit_movtomro(as, REX_64 + r, RID_ESP, ofs); } ofs += sizeof(intptr_t); } } #if LJ_64 && !LJ_ABI_WIN if (patchnfpr) *patchnfpr = fpr - REGARG_FIRSTFPR; #endif } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = (LJ_32 && (ir+1)->o == IR_HIOP); if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { if (irt_isfp(ir->t)) { int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ #if LJ_64 if ((ci->flags & CCI_CASTU64)) { Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */ } if (ofs) emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs); } else { ra_destreg(as, ir, RID_FPRET); } #else /* Number result is in x87 st0 for x86 calling convention. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, dest, RID_ESP, ofs); } if ((ci->flags & CCI_CASTU64)) { emit_movtomro(as, RID_RETLO, RID_ESP, ofs); emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4); } else { emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); } #endif #if LJ_32 } else if (hiop) { ra_destpair(as, ir); #endif } else { lua_assert(!irt_ispri(ir->t)); ra_destreg(as, ir, RID_RET); } } else if (LJ_32 && irt_isfp(ir->t)) { emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */ } } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } /* Return a constant function pointer or NULL for indirect calls. */ static void *asm_callx_func(ASMState *as, IRIns *irf, IRRef func) { #if LJ_32 UNUSED(as); if (irref_isk(func)) return (void *)irf->i; #else if (irref_isk(func)) { MCode *p; if (irf->o == IR_KINT64) p = (MCode *)(void *)ir_k64(irf)->u64; else p = (MCode *)(void *)(uintptr_t)(uint32_t)irf->i; if (p - as->mcp == (int32_t)(p - as->mcp)) return p; /* Call target is still in +-2GB range. */ /* Avoid the indirect case of emit_call(). Try to hoist func addr. */ } #endif return NULL; } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; CCallInfo ci; IRRef func; IRIns *irf; int32_t spadj = 0; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); #if LJ_32 /* Have to readjust stack after non-cdecl calls due to callee cleanup. */ if ((ci.flags & CCI_CC_MASK) != CCI_CC_CDECL) spadj = 4 * asm_count_call_slots(as, &ci, args); #endif func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } ci.func = (ASMFunction)asm_callx_func(as, irf, func); if (!(void *)ci.func) { /* Use a (hoistable) non-scratch register for indirect calls. */ RegSet allow = (RSET_GPR & ~RSET_SCRATCH); Reg r = ra_alloc1(as, func, allow); if (LJ_32) emit_spsub(as, spadj); /* Above code may cause restores! */ emit_rr(as, XO_GROUP5, XOg_CALL, r); } else if (LJ_32) { emit_spsub(as, spadj); } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc)); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_P); asm_guardcc(as, CC_NE); emit_rr(as, XO_UCOMISD, left, tmp); emit_rr(as, XO_CVTSI2SD, tmp, dest); if (!(as->flags & JIT_F_SPLIT_XMM)) emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */ emit_rr(as, XO_CVTTSD2SI, dest, left); /* Can't fuse since left is needed twice. */ } static void asm_tobit(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp = ra_noreg(IR(ir->op1)->r) ? ra_alloc1(as, ir->op1, RSET_FPR) : ra_scratch(as, RSET_FPR); Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp)); emit_rr(as, XO_MOVDto, tmp, dest); emit_mrm(as, XO_ADDSD, tmp, right); ra_left(as, tmp, ir->op1); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64)); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ Reg left = asm_fuseload(as, lref, RSET_FPR); emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left); if (left == dest) return; /* Avoid the XO_XORPS. */ } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */ /* number = (2^52+2^51 .. u32) - (2^52+2^51) */ cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000)); Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_rr(as, XO_CVTSD2SS, dest, dest); emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */ emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */ emit_loadn(as, bias, k); emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR)); return; } else { /* Integer to FP conversion. */ Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ? ra_alloc1(as, lref, RSET_GPR) : asm_fuseloadm(as, lref, RSET_GPR, st64); if (LJ_64 && st == IRT_U64) { MCLabel l_end = emit_label(as); const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000)); emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */ emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */ } emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS, dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left); } if (!(as->flags & JIT_F_SPLIT_XMM)) emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */ } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); x86Op op = st == IRT_NUM ? ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) : ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI); if (LJ_64 ? irt_isu64(ir->t) : irt_isu32(ir->t)) { /* LJ_64: For inputs >= 2^63 add -2^64, convert again. */ /* LJ_32: For inputs >= 2^31 add -2^31, convert again and add 2^31. */ Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) : ra_scratch(as, RSET_FPR); MCLabel l_end = emit_label(as); if (LJ_32) emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000); emit_rr(as, op, dest|REX_64, tmp); if (st == IRT_NUM) emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J, LJ_64 ? U64x(c3f00000,00000000) : U64x(c1e00000,00000000))); else emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J, LJ_64 ? U64x(00000000,df800000) : U64x(00000000,cf000000))); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest negative. */ emit_rr(as, op, dest|REX_64, tmp); ra_left(as, tmp, lref); } else { Reg left = asm_fuseload(as, lref, RSET_FPR); if (LJ_64 && irt_isu32(ir->t)) emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */ emit_mrm(as, op, dest|((LJ_64 && (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0), left); } } } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left, dest = ra_dest(as, ir, RSET_GPR); RegSet allow = RSET_GPR; x86Op op; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if (st == IRT_I8) { op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_U8) { op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_I16) { op = XO_MOVSXw; } else { op = XO_MOVZXw; } left = asm_fuseload(as, lref, allow); /* Add extra MOV if source is already in wrong register. */ if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) { Reg tmp = ra_scratch(as, allow); emit_rr(as, op, dest, tmp); emit_rr(as, XO_MOV, tmp, left); } else { emit_mrm(as, op, dest, left); } } else { /* 32/64 bit integer conversions. */ if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */ Reg dest = ra_dest(as, ir, RSET_GPR); ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else if (irt_is64(ir->t)) { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64 || !(ir->op2 & IRCONV_SEXT)) { /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* 32 to 64 bit sign extension. */ Reg left = asm_fuseload(as, lref, RSET_GPR); emit_mrm(as, XO_MOVSXd, dest|REX_64, left); } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64) { Reg left = asm_fuseload(as, lref, RSET_GPR); /* This is either a 32 bit reg/reg mov which zeroes the hiword ** or a load of the loword from a 64 bit address. */ emit_mrm(as, XO_MOV, dest, left); } else { /* 32/32 bit no-op (cast). */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } } #if LJ_32 && LJ_HASFFI /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */ /* 64 bit integer to FP conversion in 32 bit mode. */ static void asm_conv_fp_int64(ASMState *as, IRIns *ir) { Reg hi = ra_alloc1(as, ir->op1, RSET_GPR); Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi)); int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, dest, RID_ESP, ofs); } emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) { /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */ MCLabel l_end = emit_label(as); emit_rma(as, XO_FADDq, XOg_FADDq, lj_ir_k64_find(as->J, U64x(43f00000,00000000))); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */ } else { lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64); } emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0); /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */ emit_rmro(as, XO_MOVto, hi, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 0); } /* FP to 64 bit integer conversion in 32 bit mode. */ static void asm_conv_int64_fp(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); Reg lo, hi; lua_assert(st == IRT_NUM || st == IRT_FLOAT); lua_assert(dt == IRT_I64 || dt == IRT_U64); lua_assert(((ir-1)->op2 & IRCONV_TRUNC)); hi = ra_dest(as, ir, RSET_GPR); lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi)); if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0); /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */ if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */ emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 4); emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff); } if (dt == IRT_U64) { /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */ MCLabel l_pop, l_end = emit_label(as); emit_x87op(as, XI_FPOP); l_pop = emit_label(as); emit_sjmp(as, l_end); emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); else emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rma(as, XO_FADDq, XOg_FADDq, lj_ir_k64_find(as->J, U64x(c3f00000,00000000))); emit_sjcc(as, CC_NS, l_pop); emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */ } emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */ emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); } else { /* Otherwise set FPU rounding mode to truncate before the store. */ emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0); emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0); emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0); emit_loadi(as, lo, 0xc00); emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0); } if (dt == IRT_U64) emit_x87op(as, XI_FDUP); emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd, st == IRT_NUM ? XOg_FLDq: XOg_FLDd, asm_fuseload(as, ir->op1, RSET_EMPTY)); } #endif static void asm_strto(ASMState *as, IRIns *ir) { /* Force a spill slot for the destination register (if any). */ const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; RegSet drop = RSET_SCRATCH; if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r)) rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */ ra_evictset(as, drop); asm_guardcc(as, CC_E); emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64, RID_ESP, sps_scale(ir->s)); } static void asm_tostr(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (irt_isnum(irl->t)) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum]; args[1] = ASMREF_TMP1; /* const lua_Number * */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64, RID_ESP, ra_spill(as, irl)); } else { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint]; args[1] = ir->op1; /* int32_t k */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } } /* -- Memory references --------------------------------------------------- */ static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusearef(as, ir, RSET_GPR); if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0)) emit_mrm(as, XO_LEA, dest, RID_MRM); else if (as->mrm.base != dest) emit_rr(as, XO_MOV, dest, as->mrm.base); } /* Merge NE(HREF, niltv) check. */ static MCode *merge_href_niltv(ASMState *as, IRIns *ir) { /* Assumes nothing else generates NE of HREF. */ if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins && ra_hasreg(ir->r)) { MCode *p = as->mcp; p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6; /* Ensure no loop branch inversion happened. */ if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) { as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */ return p + *(int32_t *)(p-4); /* Return exit address. */ } } return NULL; } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir) { MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */ RegSet allow = RSET_GPR; Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, tmp = RID_NONE; IRIns *irkey = IR(ir->op2); int isk = irref_isk(ir->op2); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; if (!isk) { rset_clear(allow, tab); key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow); if (!irt_isstr(kt)) tmp = ra_scratch(as, rset_exclude(allow, key)); } /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */ l_end = emit_label(as); if (nilexit && ir[1].o == IR_NE) { emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */ nilexit = NULL; } else { emit_loada(as, dest, niltvg(J2G(as->J))); } /* Follow hash chain until the end. */ l_loop = emit_sjcc_label(as, CC_NZ); emit_rr(as, XO_TEST, dest, dest); emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (nilexit) emit_jcc(as, CC_E, nilexit); else emit_sjcc(as, CC_E, l_end); if (irt_isnum(kt)) { if (isk) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_next); emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { emit_sjcc(as, CC_P, l_next); emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n)); emit_sjcc(as, CC_AE, l_next); /* The type check avoids NaN penalties and complaints from Valgrind. */ #if LJ_64 emit_u32(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it)); #else emit_i8(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); #endif } #if LJ_64 } else if (irt_islightud(kt)) { emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64)); #endif } else { if (!irt_ispri(kt)) { lua_assert(irt_isaddr(kt)); if (isk) emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); else emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr)); emit_sjcc(as, CC_NE, l_next); } lua_assert(!irt_isnil(kt)); emit_i8(as, irt_toitype(kt)); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); } emit_sfixup(as, l_loop); checkmclim(as); /* Load main position relative to tab->node into dest. */ khash = isk ? ir_khash(irkey) : 1; if (khash == 0) { emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node)); } else { emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node)); if ((as->flags & JIT_F_PREFER_IMUL)) { emit_i8(as, sizeof(Node)); emit_rr(as, XO_IMULi8, dest, dest); } else { emit_shifti(as, XOg_SHL, dest, 3); emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0); } if (isk) { emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else if (irt_isstr(kt)) { emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash)); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else { /* Must match with hashrot() in lj_tab.c. */ emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask)); emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp); emit_shifti(as, XOg_ROL, tmp, HASH_ROT3); emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp); emit_shifti(as, XOg_ROL, dest, HASH_ROT2); emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest); emit_shifti(as, XOg_ROL, dest, HASH_ROT1); emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest); if (irt_isnum(kt)) { emit_rr(as, XO_ARITH(XOg_ADD), dest, dest); #if LJ_64 emit_shifti(as, XOg_SHR|REX_64, dest, 32); emit_rr(as, XO_MOV, tmp, dest); emit_rr(as, XO_MOVDto, key|REX_64, dest); #else emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4); emit_rr(as, XO_MOVDto, key, tmp); #endif } else { emit_rr(as, XO_MOV, tmp, key); emit_rmro(as, XO_LEA, dest, key, HASH_BIAS); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); #if !LJ_64 MCLabel l_exit; #endif lua_assert(ofs % sizeof(Node) == 0); if (ra_hasreg(dest)) { if (ofs != 0) { if (dest == node && !(as->flags & JIT_F_LEA_AGU)) emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs); else emit_rmro(as, XO_LEA, dest, node, ofs); } else if (dest != node) { emit_rr(as, XO_MOV, dest, node); } } asm_guardcc(as, CC_NE); #if LJ_64 if (!irt_ispri(irkey->t)) { Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node)); emit_rmro(as, XO_CMP, key|REX_64, node, ofs + (int32_t)offsetof(Node, key.u64)); lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t)); /* Assumes -0.0 is already canonicalized to +0.0. */ emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 : ((uint64_t)irt_toitype(irkey->t) << 32) | (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey))); } else { lua_assert(!irt_isnil(irkey->t)); emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); } #else l_exit = emit_label(as); if (irt_isnum(irkey->t)) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_exit); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { if (!irt_ispri(irkey->t)) { lua_assert(irt_isgcv(irkey->t)); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); emit_sjcc(as, CC_NE, l_exit); } lua_assert(!irt_isnil(irkey->t)); emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); } #endif } static void asm_newref(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; IRIns *irkey; Reg tmp; if (ir->r == RID_SINK) return; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); irkey = IR(ir->op2); if (irt_isnum(irkey->t)) { /* For numbers use the constant itself or a spill slot as a TValue. */ if (irref_isk(ir->op2)) emit_loada(as, tmp, ir_knum(irkey)); else emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey)); } else { /* Otherwise use g->tmptv to hold the TValue. */ if (!irref_isk(ir->op2)) { Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp)); emit_movtomro(as, REX_64IR(irkey, src), tmp, 0); } else if (!irt_ispri(irkey->t)) { emit_movmroi(as, tmp, 0, irkey->i); } if (!(LJ_64 && irt_islightud(irkey->t))) emit_movmroi(as, tmp, 4, irt_toitype(irkey->t)); emit_loada(as, tmp, &J2G(as->J)->tmptv); } } static void asm_uref(ASMState *as, IRIns *ir) { /* NYI: Check that UREFO is still open and not aliasing a slot. */ Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_rma(as, XO_MOV, dest, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv)); asm_guardcc(as, CC_NE); emit_i8(as, 1); emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed)); } else { emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v)); } emit_rmro(as, XO_MOV, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusefref(as, ir, RSET_GPR); emit_mrm(as, XO_LEA, dest, RID_MRM); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusestrref(as, ir, RSET_GPR); if (as->mrm.base == RID_NONE) emit_loadi(as, dest, as->mrm.ofs); else if (as->mrm.base == dest && as->mrm.idx == RID_NONE) emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs); else emit_mrm(as, XO_LEA, dest, RID_MRM); } /* -- Loads and stores ---------------------------------------------------- */ static void asm_fxload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); x86Op xo; if (ir->o == IR_FLOAD) asm_fusefref(as, ir, RSET_GPR); else asm_fusexref(as, ir->op1, RSET_GPR); /* ir->op2 is ignored -- unaligned loads are ok on x86. */ switch (irt_type(ir->t)) { case IRT_I8: xo = XO_MOVSXb; break; case IRT_U8: xo = XO_MOVZXb; break; case IRT_I16: xo = XO_MOVSXw; break; case IRT_U16: xo = XO_MOVZXw; break; case IRT_NUM: xo = XMM_MOVRM(as); break; case IRT_FLOAT: xo = XO_MOVSS; break; default: if (LJ_64 && irt_is64(ir->t)) dest |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOV; break; } emit_mrm(as, xo, dest, RID_MRM); } static void asm_fxstore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg src = RID_NONE, osrc = RID_NONE; int32_t k = 0; if (ir->r == RID_SINK) return; /* The IRT_I16/IRT_U16 stores should never be simplified for constant ** values since mov word [mem], imm16 has a length-changing prefix. */ if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) || !asm_isk32(as, ir->op2, &k)) { RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR : (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR; src = osrc = ra_alloc1(as, ir->op2, allow8); if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */ rset_clear(allow, osrc); src = ra_scratch(as, allow8); } rset_clear(allow, src); } if (ir->o == IR_FSTORE) { asm_fusefref(as, IR(ir->op1), allow); } else { asm_fusexref(as, ir->op1, allow); if (LJ_32 && ir->o == IR_HIOP) as->mrm.ofs += 4; } if (ra_hasreg(src)) { x86Op xo; switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break; case IRT_I16: case IRT_U16: xo = XO_MOVtow; break; case IRT_NUM: xo = XO_MOVSDto; break; case IRT_FLOAT: xo = XO_MOVSSto; break; #if LJ_64 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */ #endif default: if (LJ_64 && irt_is64(ir->t)) src |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOVto; break; } emit_mrm(as, xo, src, RID_MRM); if (!LJ_64 && src != osrc) { ra_noweak(as, osrc); emit_rr(as, XO_MOV, src, osrc); } } else { if (irt_isi8(ir->t) || irt_isu8(ir->t)) { emit_i8(as, k); emit_mrm(as, XO_MOVmib, 0, RID_MRM); } else { lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); emit_i32(as, k); emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM); } } } #if LJ_64 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck) { if (ra_used(ir) || typecheck) { Reg dest = ra_dest(as, ir, RSET_GPR); if (typecheck) { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest)); asm_guardcc(as, CC_NE); emit_i8(as, -2); emit_rr(as, XO_ARITHi8, XOg_CMP, tmp); emit_shifti(as, XOg_SAR|REX_64, tmp, 47); emit_rr(as, XO_MOV, tmp|REX_64, dest); } return dest; } else { return RID_NONE; } } #endif static void asm_ahuvload(ASMState *as, IRIns *ir) { lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isint(ir->t))); #if LJ_64 if (irt_islightud(ir->t)) { Reg dest = asm_load_lightud64(as, ir, 1); if (ra_hasreg(dest)) { asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM); } return; } else #endif if (ra_used(ir)) { RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM); } else { asm_fuseahuref(as, ir->op1, RSET_GPR); } /* Always do the type check, even if the load result is unused. */ as->mrm.ofs += 4; asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE); if (LJ_64 && irt_type(ir->t) >= IRT_NUM) { lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t)); emit_u32(as, LJ_TISNUM); emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM); } else { emit_i8(as, irt_toitype(ir->t)); emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM); } } static void asm_ahustore(ASMState *as, IRIns *ir) { if (ir->r == RID_SINK) return; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_FPR); asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOVSDto, src, RID_MRM); #if LJ_64 } else if (irt_islightud(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src)); emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM); #endif } else { IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg src = RID_NONE; if (!irref_isk(ir->op2)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } asm_fuseahuref(as, ir->op1, allow); if (ra_hasreg(src)) { emit_mrm(as, XO_MOVto, src, RID_MRM); } else if (!irt_ispri(irr->t)) { lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t))); emit_i32(as, irr->i); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } as->mrm.ofs += 4; emit_i32(as, (int32_t)irt_toitype(ir->t)); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); IRType1 t = ir->t; Reg base; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(LJ_DUALNUM || !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { Reg left = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XMM_MOVRM(as), left, base, ofs); t.irt = IRT_NUM; /* Continue with a regular number type check. */ #if LJ_64 } else if (irt_islightud(t)) { Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK)); if (ra_hasreg(dest)) { base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XO_MOV, dest|REX_64, base, ofs); } return; #endif } else if (ra_used(ir)) { RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); base = ra_alloc1(as, REF_BASE, RSET_GPR); lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); if ((ir->op2 & IRSLOAD_CONVERT)) { t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */ emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs); } else if (irt_isnum(t)) { emit_rmro(as, XMM_MOVRM(as), dest, base, ofs); } else { emit_rmro(as, XO_MOV, dest, base, ofs); } } else { if (!(ir->op2 & IRSLOAD_TYPECHECK)) return; /* No type check: avoid base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); } if ((ir->op2 & IRSLOAD_TYPECHECK)) { /* Need type check, even if the load result is unused. */ asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE); if (LJ_64 && irt_type(t) >= IRT_NUM) { lua_assert(irt_isinteger(t) || irt_isnum(t)); emit_u32(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4); } else { emit_i8(as, irt_toitype(t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4); } } } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID ctypeid = (CTypeID)IR(ir->op1)->i; CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ? lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i; const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[2]; lua_assert(sz != CTSIZE_INVALID); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { RegSet allow = (RSET_GPR & ~RSET_SCRATCH); #if LJ_64 Reg r64 = sz == 8 ? REX_64 : 0; if (irref_isk(ir->op2)) { IRIns *irk = IR(ir->op2); uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 : (uint64_t)(uint32_t)irk->i; if (sz == 4 || checki32((int64_t)k)) { emit_i32(as, (int32_t)k); emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata)); } else { emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata)); emit_loadu64(as, RID_ECX, k); } } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata)); } #else int32_t ofs = sizeof(GCcdata); if (sz == 8) { ofs += 4; ir++; lua_assert(ir->o == IR_HIOP); } do { if (irref_isk(ir->op2)) { emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i); } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r, RID_RET, ofs); rset_clear(allow, r); } if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir--; } while (1); #endif lua_assert(sz == 4 || sz == 8); } /* Combine initialization of marked, gct and ctypeid. */ emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked)); emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX, (int32_t)((~LJ_TCDATA<<8)+(ctypeid<<16))); emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES); emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite); asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata))); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab)); MCLabel l_end = emit_label(as); emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist)); emit_setgl(as, tab, gc.grayagain); emit_getgl(as, tmp, gc.grayagain); emit_i8(as, ~LJ_GC_BLACK); emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked)); emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J)); obj = IR(ir->op1)->r; emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_WHITES); if (irref_isk(ir->op2)) { GCobj *vp = ir_kgc(IR(ir->op2)); emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked); } else { Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj)); emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked)); } emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); } /* -- FP/int arithmetic and logic operations ------------------------------ */ /* Load reference onto x87 stack. Force a spill to memory if needed. */ static void asm_x87load(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_KNUM) { cTValue *tv = ir_knum(ir); if (tvispzero(tv)) /* Use fldz only for +0. */ emit_x87op(as, XI_FLDZ); else if (tvispone(tv)) emit_x87op(as, XI_FLD1); else emit_rma(as, XO_FLDq, XOg_FLDq, tv); } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) && !irref_isk(ir->op1) && mayfuse(as, ir->op1)) { IRIns *iri = IR(ir->op1); emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri)); } else { emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY)); } } /* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */ static int fpmjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX); IRIns *irx; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, lj_vm_pow_sse); irx = IR(irpp->op1); if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1) irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */ ra_left(as, RID_XMM0, irpp->op1); ra_left(as, RID_XMM1, irp->op2); return 1; } } return 0; } static void asm_fpmath(ASMState *as, IRIns *ir) { IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER; if (fpm == IRFPM_SQRT) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); emit_mrm(as, XO_SQRTSD, dest, left); } else if (fpm <= IRFPM_TRUNC) { if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */ Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op. ** Let's pretend it's a 3-byte opcode, and compensate afterwards. ** This is atrocious, but the alternatives are much worse. */ /* Round down/up/trunc == 1001/1010/1011. */ emit_i8(as, 0x09 + fpm); emit_mrm(as, XO_ROUNDSD, dest, left); if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) { as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */ } *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */ } else { /* Call helper functions for SSE2 variant. */ /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse : fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse); ra_left(as, RID_XMM0, ir->op1); } } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) { /* Rejoined to pow(). */ } else { /* Handle x87 ops. */ int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs); } emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs); switch (fpm) { /* st0 = lj_vm_*(st0) */ case IRFPM_EXP: emit_call(as, lj_vm_exp_x87); break; case IRFPM_EXP2: emit_call(as, lj_vm_exp2_x87); break; case IRFPM_SIN: emit_x87op(as, XI_FSIN); break; case IRFPM_COS: emit_x87op(as, XI_FCOS); break; case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break; case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10: /* Note: the use of fyl2xp1 would be pointless here. When computing ** log(1.0+eps) the precision is already lost after 1.0 is added. ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense. */ emit_x87op(as, XI_FYL2X); break; case IRFPM_OTHER: switch (ir->o) { case IR_ATAN2: emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break; case IR_LDEXP: emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break; default: lua_assert(0); break; } break; default: lua_assert(0); break; } asm_x87load(as, ir->op1); switch (fpm) { case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break; case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break; case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break; case IRFPM_OTHER: if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2); break; default: break; } } } static void asm_fppowi(ASMState *as, IRIns *ir) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, lj_vm_powi_sse); ra_left(as, RID_XMM0, ir->op1); ra_left(as, RID_EAX, ir->op2); } #if LJ_64 && LJ_HASFFI static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #endif static void asm_intmod(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_vm_modi]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static int asm_swapops(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); lua_assert(ra_noreg(irr->r)); if (!irm_iscomm(lj_ir_mode[ir->o])) return 0; /* Can't swap non-commutative operations. */ if (irref_isk(ir->op2)) return 0; /* Don't swap constants to the left. */ if (ra_hasreg(irl->r)) return 1; /* Swap if left already has a register. */ if (ra_samehint(ir->r, irr->r)) return 1; /* Swap if dest and right have matching hints. */ if (as->curins > as->loopref) { /* In variant part? */ if (ir->op2 < as->loopref && !irt_isphi(irr->t)) return 0; /* Keep invariants on the right. */ if (ir->op1 < as->loopref && !irt_isphi(irl->t)) return 1; /* Swap invariants to the right. */ } if (opisfusableload(irl->o)) return 1; /* Swap fusable loads to the right. */ return 0; /* Otherwise don't swap. */ } static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_FPR; Reg dest; Reg right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right)) { if (asm_swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseload(as, rref, rset_clear(allow, dest)); } emit_mrm(as, xo, dest, right); ra_left(as, dest, lref); } static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_GPR; Reg dest, right; int32_t k = 0; if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */ as->flagmcp = NULL; as->mcp += (LJ_64 && *as->mcp < XI_TESTb) ? 3 : 2; } right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) { if (asm_swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseloadm(as, rref, rset_clear(allow, dest), irt_is64(ir->t)); } if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */ asm_guardcc(as, CC_O); if (xa != XOg_X_IMUL) { if (ra_hasreg(right)) emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right); else emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k); } else if (ra_hasreg(right)) { /* IMUL r, mrm. */ emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right); } else { /* IMUL r, r, k. */ /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */ Reg left = asm_fuseloadm(as, lref, RSET_GPR, irt_is64(ir->t)); x86Op xo; if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8; } else { emit_i32(as, k); xo = XO_IMULi; } emit_mrm(as, xo, REX_64IR(ir, dest), left); return; } ra_left(as, dest, lref); } /* LEA is really a 4-operand ADD with an independent destination register, ** up to two source registers and an immediate. One register can be scaled ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several ** instructions. ** ** Currently only a few common cases are supported: ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b ** - Right ADD fusion: y = a+(b+k) ** The ommited variants have already been reduced by FOLD. ** ** There are more fusion opportunities, like gathering shifts or joining ** common references. But these are probably not worth the trouble, since ** array indexing is not decomposed and already makes use of all fields ** of the ModRM operand. */ static int asm_lea(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg dest; as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = 0; if (ra_hasreg(irl->r)) { rset_clear(allow, irl->r); ra_noweak(as, irl->r); as->mrm.base = irl->r; if (irref_isk(ir->op2) || ra_hasreg(irr->r)) { /* The PHI renaming logic does a better job in some cases. */ if (ra_hasreg(ir->r) && ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) || (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2))) return 0; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; } else { rset_clear(allow, irr->r); ra_noweak(as, irr->r); as->mrm.idx = irr->r; } } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) && irref_isk(irr->op2)) { Reg idx = ra_alloc1(as, irr->op1, allow); rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; as->mrm.ofs = IR(irr->op2)->i; } else { return 0; } } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) && (irref_isk(ir->op2) || irref_isk(irl->op2))) { Reg idx, base = ra_alloc1(as, irl->op1, allow); rset_clear(allow, base); as->mrm.base = (uint8_t)base; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; idx = ra_alloc1(as, irl->op2, allow); } else { as->mrm.ofs = IR(irl->op2)->i; idx = ra_alloc1(as, ir->op2, allow); } rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; } else { return 0; } dest = ra_dest(as, ir, allow); emit_mrm(as, XO_LEA, dest, RID_MRM); return 1; /* Success. */ } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_ADDSD); else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp || irt_is64(ir->t) || !asm_lea(as, ir)) asm_intarith(as, ir, XOg_ADD); } static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg) { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest); ra_left(as, dest, ir->op1); } static void asm_min_max(ASMState *as, IRIns *ir, int cc) { Reg right, dest = ra_dest(as, ir, RSET_GPR); IRRef lref = ir->op1, rref = ir->op2; if (irref_isk(rref)) { lref = rref; rref = ir->op1; } right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest)); emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right); emit_rr(as, XO_CMP, REX_64IR(ir, dest), right); ra_left(as, dest, lref); } static void asm_bitswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24), REX_64IR(ir, 0), dest, 0, as->mcp, 1); ra_left(as, dest, ir->op1); } static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs) { IRRef rref = ir->op2; IRIns *irr = IR(rref); Reg dest; if (irref_isk(rref)) { /* Constant shifts. */ int shift; dest = ra_dest(as, ir, RSET_GPR); shift = irr->i & (irt_is64(ir->t) ? 63 : 31); switch (shift) { case 0: break; case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break; default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break; } } else { /* Variable shifts implicitly use register cl (i.e. ecx). */ Reg right; dest = ra_dest(as, ir, rset_exclude(RSET_GPR, RID_ECX)); if (dest == RID_ECX) { dest = ra_scratch(as, rset_exclude(RSET_GPR, RID_ECX)); emit_rr(as, XO_MOV, RID_ECX, dest); } right = irr->r; if (ra_noreg(right)) right = ra_allocref(as, rref, RID2RSET(RID_ECX)); else if (right != RID_ECX) ra_scratch(as, RID2RSET(RID_ECX)); emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest); ra_noweak(as, right); if (right != RID_ECX) emit_rr(as, XO_MOV, RID_ECX, right); } ra_left(as, dest, ir->op1); /* ** Note: avoid using the flags resulting from a shift or rotate! ** All of them cause a partial flag stall, except for r,1 shifts ** (but not rotates). And a shift count of 0 leaves the flags unmodified. */ } /* -- Comparisons --------------------------------------------------------- */ /* Virtual flags for unordered FP comparisons. */ #define VCC_U 0x1000 /* Unordered. */ #define VCC_P 0x2000 /* Needs extra CC_P branch. */ #define VCC_S 0x4000 /* Swap avoids CC_P branch. */ #define VCC_PS (VCC_P|VCC_S) /* Map of comparisons to flags. ORDER IR. */ #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf)) static const uint16_t asm_compmap[IR_ABC+1] = { /* signed non-eq unsigned flags */ /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS), /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0), /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS), /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0), /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U), /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS), /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U), /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS), /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P), /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P), /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */ }; /* FP and integer comparisons. */ static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc) { if (irt_isnum(ir->t)) { IRRef lref = ir->op1; IRRef rref = ir->op2; Reg left, right; MCLabel l_around; /* ** An extra CC_P branch is required to preserve ordered/unordered ** semantics for FP comparisons. This can be avoided by swapping ** the operands and inverting the condition (except for EQ and UNE). ** So always try to swap if possible. ** ** Another option would be to swap operands to achieve better memory ** operand fusion. But it's unlikely that this outweighs the cost ** of the extra branches. */ if (cc & VCC_S) { /* Swap? */ IRRef tmp = lref; lref = rref; rref = tmp; cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */ } left = ra_alloc1(as, lref, RSET_FPR); right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left)); l_around = emit_label(as); asm_guardcc(as, cc >> 4); if (cc & VCC_P) { /* Extra CC_P branch required? */ if (!(cc & VCC_U)) { asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */ } else if (l_around != as->invmcp) { emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */ } else { /* Patched to mcloop by asm_loop_fixup. */ as->loopinv = 2; if (as->realign) emit_sjcc(as, CC_P, as->mcp); else emit_jcc(as, CC_P, as->mcp); } } emit_mrm(as, XO_UCOMISD, left, right); } else { IRRef lref = ir->op1, rref = ir->op2; IROp leftop = (IROp)(IR(lref)->o); Reg r64 = REX_64IR(ir, 0); int32_t imm = 0; lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t) || irt_isu8(ir->t)); /* Swap constants (only for ABC) and fusable loads to the right. */ if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) { if ((cc & 0xc) == 0xc) cc ^= 0x53; /* L <-> G, LE <-> GE */ else if ((cc & 0xa) == 0x2) cc ^= 0x55; /* A <-> B, AE <-> BE */ lref = ir->op2; rref = ir->op1; } if (asm_isk32(as, rref, &imm)) { IRIns *irl = IR(lref); /* Check wether we can use test ins. Not for unsigned, since CF=0. */ int usetest = (imm == 0 && (cc & 0xa) != 0x2); if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) { /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */ Reg right, left = RID_NONE; RegSet allow = RSET_GPR; if (!asm_isk32(as, irl->op2, &imm)) { left = ra_alloc1(as, irl->op2, allow); rset_clear(allow, left); } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */ IRIns *irll = IR(irl->op1); if (opisfusableload((IROp)irll->o) && (irt_isi8(irll->t) || irt_isu8(irll->t))) { IRType1 origt = irll->t; /* Temporarily flip types. */ irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT; as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseload(as, irl->op1, RSET_GPR); as->curins++; irll->t = origt; if (right != RID_MRM) goto test_nofuse; /* Fusion succeeded, emit test byte mrm, imm8. */ asm_guardcc(as, cc); emit_i8(as, (imm & 0xff)); emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM); return; } } as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseloadm(as, irl->op1, allow, r64); as->curins++; /* Undo the above. */ test_nofuse: asm_guardcc(as, cc); if (ra_noreg(left)) { emit_i32(as, imm); emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right); } else { emit_mrm(as, XO_TEST, r64 + left, right); } } else { Reg left; if (opisfusableload((IROp)irl->o) && ((irt_isu8(irl->t) && checku8(imm)) || ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) || (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) { /* Only the IRT_INT case is fused by asm_fuseload. ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads ** are handled here. ** Note that cmp word [mem], imm16 should not be generated, ** since it has a length-changing prefix. Compares of a word ** against a sign-extended imm8 are ok, however. */ IRType1 origt = irl->t; /* Temporarily flip types. */ irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT; left = asm_fuseload(as, lref, RSET_GPR); irl->t = origt; if (left == RID_MRM) { /* Fusion succeeded? */ if (irt_isu8(irl->t) || irt_isu16(irl->t)) cc >>= 4; /* Need unsigned compare. */ asm_guardcc(as, cc); emit_i8(as, imm); emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ? XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM); return; } /* Otherwise handle register case as usual. */ } else { left = asm_fuseloadm(as, lref, irt_isu8(ir->t) ? RSET_GPR8 : RSET_GPR, r64); } asm_guardcc(as, cc); if (usetest && left != RID_MRM) { /* Use test r,r instead of cmp r,0. */ x86Op xo = XO_TEST; if (irt_isu8(ir->t)) { lua_assert(ir->o == IR_EQ || ir->o == IR_NE); xo = XO_TESTb; if (!rset_test(RSET_RANGE(RID_EAX, RID_EBX+1), left)) { if (LJ_64) { left |= FORCE_REX; } else { emit_i32(as, 0xff); emit_mrm(as, XO_GROUP3, XOg_TEST, left); return; } } } emit_rr(as, xo, r64 + left, left); if (irl+1 == ir) /* Referencing previous ins? */ as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */ } else { emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm); } } } else { Reg left = ra_alloc1(as, lref, RSET_GPR); Reg right = asm_fuseloadm(as, rref, rset_exclude(RSET_GPR, left), r64); asm_guardcc(as, cc); emit_mrm(as, XO_CMP, r64 + left, right); } } } #if LJ_32 && LJ_HASFFI /* 64 bit integer comparisons in 32 bit mode. */ static void asm_comp_int64(ASMState *as, IRIns *ir) { uint32_t cc = asm_compmap[(ir-1)->o]; RegSet allow = RSET_GPR; Reg lefthi = RID_NONE, leftlo = RID_NONE; Reg righthi = RID_NONE, rightlo = RID_NONE; MCLabel l_around; x86ModRM mrm; as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */ /* Allocate/fuse hiword operands. */ if (irref_isk(ir->op2)) { lefthi = asm_fuseload(as, ir->op1, allow); } else { lefthi = ra_alloc1(as, ir->op1, allow); righthi = asm_fuseload(as, ir->op2, allow); if (righthi == RID_MRM) { if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base); if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx); } else { rset_clear(allow, righthi); } } mrm = as->mrm; /* Save state for hiword instruction. */ /* Allocate/fuse loword operands. */ if (irref_isk((ir-1)->op2)) { leftlo = asm_fuseload(as, (ir-1)->op1, allow); } else { leftlo = ra_alloc1(as, (ir-1)->op1, allow); rightlo = asm_fuseload(as, (ir-1)->op2, allow); if (rightlo == RID_MRM) { if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base); if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx); } else { rset_clear(allow, rightlo); } } /* All register allocations must be performed _before_ this point. */ l_around = emit_label(as); as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */ /* Loword comparison and branch. */ asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */ if (ra_noreg(rightlo)) { int32_t imm = IR((ir-1)->op2)->i; if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM) emit_rr(as, XO_TEST, leftlo, leftlo); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm); } else { emit_mrm(as, XO_CMP, leftlo, rightlo); } /* Hiword comparison and branches. */ if ((cc & 15) != CC_NE) emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */ if ((cc & 15) != CC_E) asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */ as->mrm = mrm; /* Restore state. */ if (ra_noreg(righthi)) { int32_t imm = IR(ir->op2)->i; if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM) emit_rr(as, XO_TEST, lefthi, lefthi); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm); } else { emit_mrm(as, XO_CMP, lefthi, righthi); } } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_32 && LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ if (usehi || uselo) { if (irt_isfp(ir->t)) asm_conv_fp_int64(as, ir); else asm_conv_int64_fp(as, ir); } as->curins--; /* Always skip the CONV. */ return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ asm_comp_int64(as, ir); return; } else if ((ir-1)->o == IR_XSTORE) { if ((ir-1)->r != RID_SINK) asm_fxstore(as, ir); return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: as->flagmcp = NULL; as->curins--; asm_intarith(as, ir, XOg_ADC); asm_intarith(as, ir-1, XOg_ADD); break; case IR_SUB: as->flagmcp = NULL; as->curins--; asm_intarith(as, ir, XOg_SBB); asm_intarith(as, ir-1, XOg_SUB); break; case IR_NEG: { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, XOg_NEG, dest); emit_i8(as, 0); emit_rr(as, XO_ARITHi8, XOg_ADC, dest); ra_left(as, dest, ir->op1); as->curins--; asm_neg_not(as, ir-1, XOg_NEG); break; } case IR_CALLN: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by CNEWI itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */ #endif } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore eax. */ Reg pbase = irp ? irp->r : RID_BASE; Reg r = allow ? rset_pickbot(allow) : RID_EAX; emit_jcc(as, CC_B, exitstub_addr(as->J, exitno)); if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0); else ra_modified(as, r); emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot)); if (ra_hasreg(pbase) && pbase != r) emit_rr(as, XO_ARITH(XOg_SUB), r, pbase); else emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE, ptr2addr(&J2G(as->J)->jit_base)); emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack)); emit_getgl(as, r, jit_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs); } else { lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t))); if (!irref_isk(ref)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE)); emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs); } else if (!irt_ispri(ir->t)) { emit_movmroi(as, RID_BASE, ofs, ir->i); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s != 0) /* Do not overwrite link to previous frame. */ emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--)); } else { if (!(LJ_64 && irt_islightud(ir->t))) emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t)); } } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_rr(as, XO_TEST, RID_RET, RID_RET); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); emit_loada(as, tmp, J2G(as->J)); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_sjcc(as, CC_B, l_end); emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold); emit_getgl(as, tmp, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->realign) { /* Realigned loops use short jumps. */ as->realign = NULL; /* Stop another retry. */ lua_assert(((intptr_t)target & 15) == 0); if (as->loopinv) { /* Inverted loop branch? */ p -= 5; p[0] = XI_JMP; lua_assert(target - p >= -128); p[-1] = (MCode)(target - p); /* Patch sjcc. */ if (as->loopinv == 2) p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */ } else { lua_assert(target - p >= -128); p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */ p[-2] = XI_JMPs; } } else { MCode *newloop; p[-5] = XI_JMP; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the jcc and patched the jmp. */ p -= 5; newloop = target+4; *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */ if (as->loopinv == 2) { *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */ newloop = target+8; } } else { /* Otherwise just patch jmp. */ *(int32_t *)(p-4) = (int32_t)(target - p); newloop = target+3; } /* Realign small loops and shorten the loop branch. */ if (newloop >= p - 128) { as->realign = newloop; /* Force a retry and remember alignment. */ as->curins = as->stopins; /* Abort asm_trace now. */ as->T->nins = as->orignins; /* Remove any added renames. */ } } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_rr(as, XO_MOV, r, RID_BASE); } } /* Coalesce or reload BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { rset_clear(allow, irp->r); emit_rr(as, XO_MOV, r, irp->r); /* Move from coalesced parent reg. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */ MCode *p = as->mctop; MCode *target, *q; int32_t spadj = as->T->spadjust; if (spadj == 0) { p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0); } else { MCode *p1; /* Patch stack adjustment. */ if (checki8(spadj)) { p -= 3; p1 = p-6; *p1 = (MCode)spadj; } else { p1 = p-9; *(int32_t *)p1 = spadj; } if ((as->flags & JIT_F_LEA_AGU)) { #if LJ_64 p1[-4] = 0x48; #endif p1[-3] = (MCode)XI_LEA; p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP); p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { #if LJ_64 p1[-3] = 0x48; #endif p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi); p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP); } } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_JMP; /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */ for (q = as->mctop-1; q >= p; q--) *q = XI_NOP; as->mctop = p; } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop; /* Realign and leave room for backwards loop branch or exit branch. */ if (as->realign) { int i = ((int)(intptr_t)as->realign) & 15; /* Fill unused mcode tail with NOPs to make the prefetcher happy. */ while (i-- > 0) *--p = XI_NOP; as->mctop = p; p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */ } else { p -= 5; /* Space for exit branch (near jmp). */ } if (as->loopref) { as->invmcp = as->mcp = p; } else { /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */ as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0)); as->invmcp = NULL; } } /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_USE: ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; case IR_GCSTEP: asm_gcstep(as, ir); break; /* Guarded assertions. */ case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_EQ: case IR_NE: case IR_ABC: asm_comp(as, ir, asm_compmap[ir->o]); break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break; case IR_BSWAP: asm_bitswap(as, ir); break; case IR_BAND: asm_intarith(as, ir, XOg_AND); break; case IR_BOR: asm_intarith(as, ir, XOg_OR); break; case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break; case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break; case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break; case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break; case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break; case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break; /* Arithmetic ops. */ case IR_ADD: asm_add(as, ir); break; case IR_SUB: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_SUBSD); else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */ asm_intarith(as, ir, XOg_SUB); break; case IR_MUL: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MULSD); else asm_intarith(as, ir, XOg_X_IMUL); break; case IR_DIV: #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); else #endif asm_fparith(as, ir, XO_DIVSD); break; case IR_MOD: #if LJ_64 && LJ_HASFFI if (!irt_isint(ir->t)) asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); else #endif asm_intmod(as, ir); break; case IR_NEG: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_XORPS); else asm_neg_not(as, ir, XOg_NEG); break; case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break; case IR_MIN: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MINSD); else asm_min_max(as, ir, CC_G); break; case IR_MAX: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MAXSD); else asm_min_max(as, ir, CC_L); break; case IR_FPMATH: case IR_ATAN2: case IR_LDEXP: asm_fpmath(as, ir); break; case IR_POW: #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); else #endif asm_fppowi(as, ir); break; /* Overflow-checking arithmetic ops. Note: don't use LEA here! */ case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break; case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break; case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break; /* Allocations. */ case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_TOBIT: asm_tobit(as, ir); break; case IR_CONV: asm_conv(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX]; int nslots; asm_collectargs(as, ir, ci, args); nslots = asm_count_call_slots(as, ci, args); if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; #if LJ_64 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); #else return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET); #endif } /* Target-specific setup. */ static void asm_setup_target(ASMState *as) { asm_exitstub_setup(as, as->T->nsnap); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *mcarea = lj_mcode_patch(J, p, 0); MSize len = T->szmcode; MCode *px = exitstub_addr(J, exitno) - 6; MCode *pe = p+len-6; uint32_t stateaddr = u32ptr(&J2G(J)->vmstate); if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px) *(int32_t *)(p+len-4) = jmprel(p+len, target); /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */ for (; p < pe; p++) if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) { p += LJ_64 ? 11 : 10; break; } lua_assert(p < pe); for (; p < pe; p++) { if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) { *(int32_t *)(p+2) = jmprel(p+6, target); p += 5; } } lj_mcode_sync(T->mcode, T->mcode + T->szmcode); lj_mcode_patch(J, mcarea, 1); }