/**************************************************************************** Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "renderer/CCRenderer.h" #include #include "renderer/CCTrianglesCommand.h" #include "renderer/CCQuadCommand.h" #include "renderer/CCBatchCommand.h" #include "renderer/CCCustomCommand.h" #include "renderer/CCGroupCommand.h" #include "renderer/CCPrimitiveCommand.h" #include "renderer/CCMeshCommand.h" #include "renderer/CCGLProgramCache.h" #include "renderer/CCMaterial.h" #include "renderer/CCTechnique.h" #include "renderer/CCPass.h" #include "renderer/CCRenderState.h" #include "renderer/ccGLStateCache.h" #include "base/CCConfiguration.h" #include "base/CCDirector.h" #include "base/CCEventDispatcher.h" #include "base/CCEventListenerCustom.h" #include "base/CCEventType.h" #include "2d/CCCamera.h" #include "2d/CCScene.h" NS_CC_BEGIN // helper static bool compareRenderCommand(RenderCommand* a, RenderCommand* b) { return a->getGlobalOrder() < b->getGlobalOrder(); } static bool compare3DCommand(RenderCommand* a, RenderCommand* b) { return a->getDepth() > b->getDepth(); } // queue RenderQueue::RenderQueue() { } void RenderQueue::push_back(RenderCommand* command) { float z = command->getGlobalOrder(); if(z < 0) { _commands[QUEUE_GROUP::GLOBALZ_NEG].push_back(command); } else if(z > 0) { _commands[QUEUE_GROUP::GLOBALZ_POS].push_back(command); } else { if(command->is3D()) { if(command->isTransparent()) { _commands[QUEUE_GROUP::TRANSPARENT_3D].push_back(command); } else { _commands[QUEUE_GROUP::OPAQUE_3D].push_back(command); } } else { _commands[QUEUE_GROUP::GLOBALZ_ZERO].push_back(command); } } } ssize_t RenderQueue::size() const { ssize_t result(0); for(int index = 0; index < QUEUE_GROUP::QUEUE_COUNT; ++index) { result += _commands[index].size(); } return result; } void RenderQueue::sort() { // Don't sort _queue0, it already comes sorted std::sort(std::begin(_commands[QUEUE_GROUP::TRANSPARENT_3D]), std::end(_commands[QUEUE_GROUP::TRANSPARENT_3D]), compare3DCommand); std::sort(std::begin(_commands[QUEUE_GROUP::GLOBALZ_NEG]), std::end(_commands[QUEUE_GROUP::GLOBALZ_NEG]), compareRenderCommand); std::sort(std::begin(_commands[QUEUE_GROUP::GLOBALZ_POS]), std::end(_commands[QUEUE_GROUP::GLOBALZ_POS]), compareRenderCommand); } RenderCommand* RenderQueue::operator[](ssize_t index) const { for(int queIndex = 0; queIndex < QUEUE_GROUP::QUEUE_COUNT; ++queIndex) { if(index < static_cast(_commands[queIndex].size())) return _commands[queIndex][index]; else { index -= _commands[queIndex].size(); } } CCASSERT(false, "invalid index"); return nullptr; } void RenderQueue::clear() { for(int i = 0; i < QUEUE_COUNT; ++i) { _commands[i].clear(); } } void RenderQueue::realloc(size_t reserveSize) { for(int i = 0; i < QUEUE_COUNT; ++i) { _commands[i] = std::vector(); _commands[i].reserve(reserveSize); } } void RenderQueue::saveRenderState() { _isDepthEnabled = glIsEnabled(GL_DEPTH_TEST) != GL_FALSE; _isCullEnabled = glIsEnabled(GL_CULL_FACE) != GL_FALSE; glGetBooleanv(GL_DEPTH_WRITEMASK, &_isDepthWrite); CHECK_GL_ERROR_DEBUG(); } void RenderQueue::restoreRenderState() { if (_isCullEnabled) { glEnable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setCullFace(true); } else { glDisable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setCullFace(false); } if (_isDepthEnabled) { glEnable(GL_DEPTH_TEST); RenderState::StateBlock::_defaultState->setDepthTest(true); } else { glDisable(GL_DEPTH_TEST); RenderState::StateBlock::_defaultState->setDepthTest(false); } glDepthMask(_isDepthWrite); RenderState::StateBlock::_defaultState->setDepthWrite(_isDepthEnabled); CHECK_GL_ERROR_DEBUG(); } // // // static const int DEFAULT_RENDER_QUEUE = 0; // // constructors, destructor, init // Renderer::Renderer() :_lastMaterialID(0) ,_lastBatchedMeshCommand(nullptr) ,_filledVertex(0) ,_filledIndex(0) ,_numberQuads(0) ,_glViewAssigned(false) ,_isRendering(false) ,_isDepthTestFor2D(false) #if CC_ENABLE_CACHE_TEXTURE_DATA ,_cacheTextureListener(nullptr) #endif { _groupCommandManager = new (std::nothrow) GroupCommandManager(); _commandGroupStack.push(DEFAULT_RENDER_QUEUE); RenderQueue defaultRenderQueue; _renderGroups.push_back(defaultRenderQueue); _batchedCommands.reserve(BATCH_QUADCOMMAND_RESEVER_SIZE); // default clear color _clearColor = Color4F::BLACK; } Renderer::~Renderer() { _renderGroups.clear(); _groupCommandManager->release(); glDeleteBuffers(2, _buffersVBO); glDeleteBuffers(2, _quadbuffersVBO); if (Configuration::getInstance()->supportsShareableVAO()) { glDeleteVertexArrays(1, &_buffersVAO); glDeleteVertexArrays(1, &_quadVAO); GL::bindVAO(0); } #if CC_ENABLE_CACHE_TEXTURE_DATA Director::getInstance()->getEventDispatcher()->removeEventListener(_cacheTextureListener); #endif } void Renderer::initGLView() { #if CC_ENABLE_CACHE_TEXTURE_DATA _cacheTextureListener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom* event){ /** listen the event that renderer was recreated on Android/WP8 */ this->setupBuffer(); }); Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_cacheTextureListener, -1); #endif //setup index data for quads for( int i=0; i < VBO_SIZE/4; i++) { _quadIndices[i*6+0] = (GLushort) (i*4+0); _quadIndices[i*6+1] = (GLushort) (i*4+1); _quadIndices[i*6+2] = (GLushort) (i*4+2); _quadIndices[i*6+3] = (GLushort) (i*4+3); _quadIndices[i*6+4] = (GLushort) (i*4+2); _quadIndices[i*6+5] = (GLushort) (i*4+1); } setupBuffer(); _glViewAssigned = true; } void Renderer::setupBuffer() { if(Configuration::getInstance()->supportsShareableVAO()) { setupVBOAndVAO(); } else { setupVBO(); } } void Renderer::setupVBOAndVAO() { //generate vbo and vao for trianglesCommand glGenVertexArrays(1, &_buffersVAO); GL::bindVAO(_buffersVAO); glGenBuffers(2, &_buffersVBO[0]); glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * VBO_SIZE, _verts, GL_DYNAMIC_DRAW); // vertices glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_POSITION); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, vertices)); // colors glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_COLOR); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, colors)); // tex coords glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_TEX_COORD); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * INDEX_VBO_SIZE, _indices, GL_STATIC_DRAW); // Must unbind the VAO before changing the element buffer. GL::bindVAO(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); //generate vbo and vao for quadCommand glGenVertexArrays(1, &_quadVAO); GL::bindVAO(_quadVAO); glGenBuffers(2, &_quadbuffersVBO[0]); glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * VBO_SIZE, _quadVerts, GL_DYNAMIC_DRAW); // vertices glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_POSITION); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, vertices)); // colors glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_COLOR); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, colors)); // tex coords glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_TEX_COORD); glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_quadIndices[0]) * INDEX_VBO_SIZE, _quadIndices, GL_STATIC_DRAW); // Must unbind the VAO before changing the element buffer. GL::bindVAO(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); CHECK_GL_ERROR_DEBUG(); } void Renderer::setupVBO() { glGenBuffers(2, &_buffersVBO[0]); glGenBuffers(2, &_quadbuffersVBO[0]); mapBuffers(); } void Renderer::mapBuffers() { // Avoid changing the element buffer for whatever VAO might be bound. GL::bindVAO(0); glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * VBO_SIZE, _verts, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * VBO_SIZE, _quadVerts, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * INDEX_VBO_SIZE, _indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_quadIndices[0]) * INDEX_VBO_SIZE, _quadIndices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); CHECK_GL_ERROR_DEBUG(); } void Renderer::addCommand(RenderCommand* command) { int renderQueue =_commandGroupStack.top(); addCommand(command, renderQueue); } void Renderer::addCommand(RenderCommand* command, int renderQueue) { CCASSERT(!_isRendering, "Cannot add command while rendering"); CCASSERT(renderQueue >=0, "Invalid render queue"); CCASSERT(command->getType() != RenderCommand::Type::UNKNOWN_COMMAND, "Invalid Command Type"); _renderGroups[renderQueue].push_back(command); } void Renderer::pushGroup(int renderQueueID) { CCASSERT(!_isRendering, "Cannot change render queue while rendering"); _commandGroupStack.push(renderQueueID); } void Renderer::popGroup() { CCASSERT(!_isRendering, "Cannot change render queue while rendering"); _commandGroupStack.pop(); } int Renderer::createRenderQueue() { RenderQueue newRenderQueue; _renderGroups.push_back(newRenderQueue); return (int)_renderGroups.size() - 1; } void Renderer::processRenderCommand(RenderCommand* command) { auto commandType = command->getType(); if( RenderCommand::Type::TRIANGLES_COMMAND == commandType) { //Draw if we have batched other commands which are not triangle command flush3D(); flushQuads(); //Process triangle command auto cmd = static_cast(command); //Draw batched Triangles if necessary if(cmd->isSkipBatching() || _filledVertex + cmd->getVertexCount() > VBO_SIZE || _filledIndex + cmd->getIndexCount() > INDEX_VBO_SIZE) { CCASSERT(cmd->getVertexCount()>= 0 && cmd->getVertexCount() < VBO_SIZE, "VBO for vertex is not big enough, please break the data down or use customized render command"); CCASSERT(cmd->getIndexCount()>= 0 && cmd->getIndexCount() < INDEX_VBO_SIZE, "VBO for index is not big enough, please break the data down or use customized render command"); //Draw batched Triangles if VBO is full drawBatchedTriangles(); } //Batch Triangles _batchedCommands.push_back(cmd); fillVerticesAndIndices(cmd); if(cmd->isSkipBatching()) { drawBatchedTriangles(); } } else if ( RenderCommand::Type::QUAD_COMMAND == commandType ) { //Draw if we have batched other commands which are not quad command flush3D(); flushTriangles(); //Process quad command auto cmd = static_cast(command); //Draw batched quads if necessary if(cmd->isSkipBatching()|| (_numberQuads + cmd->getQuadCount()) * 4 > VBO_SIZE ) { CCASSERT(cmd->getQuadCount()>= 0 && cmd->getQuadCount() * 4 < VBO_SIZE, "VBO for vertex is not big enough, please break the data down or use customized render command"); //Draw batched quads if VBO is full drawBatchedQuads(); } //Batch Quads _batchQuadCommands.push_back(cmd); fillQuads(cmd); if(cmd->isSkipBatching()) { drawBatchedQuads(); } } else if (RenderCommand::Type::MESH_COMMAND == commandType) { flush2D(); auto cmd = static_cast(command); if (cmd->isSkipBatching() || _lastBatchedMeshCommand == nullptr || _lastBatchedMeshCommand->getMaterialID() != cmd->getMaterialID()) { flush3D(); if(cmd->isSkipBatching()) { // XXX: execute() will call bind() and unbind() // but unbind() shouldn't be call if the next command is a MESH_COMMAND with Material. // Once most of cocos2d-x moves to Pass/StateBlock, only bind() should be used. cmd->execute(); } else { cmd->preBatchDraw(); cmd->batchDraw(); _lastBatchedMeshCommand = cmd; } } else { cmd->batchDraw(); } } else if(RenderCommand::Type::GROUP_COMMAND == commandType) { flush(); int renderQueueID = ((GroupCommand*) command)->getRenderQueueID(); visitRenderQueue(_renderGroups[renderQueueID]); } else if(RenderCommand::Type::CUSTOM_COMMAND == commandType) { flush(); auto cmd = static_cast(command); cmd->execute(); } else if(RenderCommand::Type::BATCH_COMMAND == commandType) { flush(); auto cmd = static_cast(command); cmd->execute(); } else if(RenderCommand::Type::PRIMITIVE_COMMAND == commandType) { flush(); auto cmd = static_cast(command); cmd->execute(); } else { CCLOGERROR("Unknown commands in renderQueue"); } } void Renderer::visitRenderQueue(RenderQueue& queue) { queue.saveRenderState(); // //Process Global-Z < 0 Objects // const auto& zNegQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_NEG); if (zNegQueue.size() > 0) { if(_isDepthTestFor2D) { glEnable(GL_DEPTH_TEST); glDepthMask(true); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(true); RenderState::StateBlock::_defaultState->setBlend(true); } else { glDisable(GL_DEPTH_TEST); glDepthMask(false); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(false); RenderState::StateBlock::_defaultState->setDepthWrite(false); RenderState::StateBlock::_defaultState->setBlend(true); } glDisable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setCullFace(false); for (auto it = zNegQueue.cbegin(); it != zNegQueue.cend(); ++it) { processRenderCommand(*it); } flush(); } // //Process Opaque Object // const auto& opaqueQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::OPAQUE_3D); if (opaqueQueue.size() > 0) { //Clear depth to achieve layered rendering glEnable(GL_DEPTH_TEST); glDepthMask(true); glDisable(GL_BLEND); glEnable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(true); RenderState::StateBlock::_defaultState->setBlend(false); RenderState::StateBlock::_defaultState->setCullFace(true); for (auto it = opaqueQueue.cbegin(); it != opaqueQueue.cend(); ++it) { processRenderCommand(*it); } flush(); } // //Process 3D Transparent object // const auto& transQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::TRANSPARENT_3D); if (transQueue.size() > 0) { glEnable(GL_DEPTH_TEST); glDepthMask(false); glEnable(GL_BLEND); glEnable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(false); RenderState::StateBlock::_defaultState->setBlend(true); RenderState::StateBlock::_defaultState->setCullFace(true); for (auto it = transQueue.cbegin(); it != transQueue.cend(); ++it) { processRenderCommand(*it); } flush(); } // //Process Global-Z = 0 Queue // const auto& zZeroQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_ZERO); if (zZeroQueue.size() > 0) { if(_isDepthTestFor2D) { glEnable(GL_DEPTH_TEST); glDepthMask(true); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(true); RenderState::StateBlock::_defaultState->setBlend(true); } else { glDisable(GL_DEPTH_TEST); glDepthMask(false); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(false); RenderState::StateBlock::_defaultState->setDepthWrite(false); RenderState::StateBlock::_defaultState->setBlend(true); } glDisable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setCullFace(false); for (auto it = zZeroQueue.cbegin(); it != zZeroQueue.cend(); ++it) { processRenderCommand(*it); } flush(); } // //Process Global-Z > 0 Queue // const auto& zPosQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_POS); if (zPosQueue.size() > 0) { if(_isDepthTestFor2D) { glEnable(GL_DEPTH_TEST); glDepthMask(true); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(true); RenderState::StateBlock::_defaultState->setBlend(true); } else { glDisable(GL_DEPTH_TEST); glDepthMask(false); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(false); RenderState::StateBlock::_defaultState->setDepthWrite(false); RenderState::StateBlock::_defaultState->setBlend(true); } glDisable(GL_CULL_FACE); RenderState::StateBlock::_defaultState->setCullFace(false); for (auto it = zPosQueue.cbegin(); it != zPosQueue.cend(); ++it) { processRenderCommand(*it); } flush(); } queue.restoreRenderState(); } void Renderer::render() { //Uncomment this once everything is rendered by new renderer //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //TODO: setup camera or MVP _isRendering = true; if (_glViewAssigned) { //Process render commands //1. Sort render commands based on ID for (auto &renderqueue : _renderGroups) { renderqueue.sort(); } visitRenderQueue(_renderGroups[0]); } clean(); _isRendering = false; } void Renderer::clean() { // Clear render group for (size_t j = 0 ; j < _renderGroups.size(); j++) { //commands are owned by nodes // for (const auto &cmd : _renderGroups[j]) // { // cmd->releaseToCommandPool(); // } _renderGroups[j].clear(); } // Clear batch commands _batchedCommands.clear(); _batchQuadCommands.clear(); _filledVertex = 0; _filledIndex = 0; _numberQuads = 0; _lastMaterialID = 0; _lastBatchedMeshCommand = nullptr; } void Renderer::clear() { //Enable Depth mask to make sure glClear clear the depth buffer correctly glDepthMask(true); glClearColor(_clearColor.r, _clearColor.g, _clearColor.b, _clearColor.a); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glDepthMask(false); RenderState::StateBlock::_defaultState->setDepthWrite(false); } void Renderer::setDepthTest(bool enable) { if (enable) { glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthFunction(RenderState::DEPTH_LEQUAL); // glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); } else { glDisable(GL_DEPTH_TEST); RenderState::StateBlock::_defaultState->setDepthTest(false); } _isDepthTestFor2D = enable; CHECK_GL_ERROR_DEBUG(); } void Renderer::fillVerticesAndIndices(const TrianglesCommand* cmd) { memcpy(_verts + _filledVertex, cmd->getVertices(), sizeof(V3F_C4B_T2F) * cmd->getVertexCount()); const Mat4& modelView = cmd->getModelView(); for(ssize_t i=0; i< cmd->getVertexCount(); ++i) { V3F_C4B_T2F *q = &_verts[i + _filledVertex]; Vec3 *vec1 = (Vec3*)&q->vertices; modelView.transformPoint(vec1); } const unsigned short* indices = cmd->getIndices(); //fill index for(ssize_t i=0; i< cmd->getIndexCount(); ++i) { _indices[_filledIndex + i] = _filledVertex + indices[i]; } _filledVertex += cmd->getVertexCount(); _filledIndex += cmd->getIndexCount(); } void Renderer::fillQuads(const QuadCommand *cmd) { const Mat4& modelView = cmd->getModelView(); const V3F_C4B_T2F* quads = (V3F_C4B_T2F*)cmd->getQuads(); for(ssize_t i=0; i< cmd->getQuadCount() * 4; ++i) { _quadVerts[i + _numberQuads * 4] = quads[i]; modelView.transformPoint(quads[i].vertices,&(_quadVerts[i + _numberQuads * 4].vertices)); } _numberQuads += cmd->getQuadCount(); } void Renderer::drawBatchedTriangles() { //TODO: we can improve the draw performance by insert material switching command before hand. int indexToDraw = 0; int startIndex = 0; //Upload buffer to VBO if(_filledVertex <= 0 || _filledIndex <= 0 || _batchedCommands.empty()) { return; } if (Configuration::getInstance()->supportsShareableVAO()) { //Bind VAO GL::bindVAO(_buffersVAO); //Set VBO data glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); // option 1: subdata // glBufferSubData(GL_ARRAY_BUFFER, sizeof(_quads[0])*start, sizeof(_quads[0]) * n , &_quads[start] ); // option 2: data // glBufferData(GL_ARRAY_BUFFER, sizeof(quads_[0]) * (n-start), &quads_[start], GL_DYNAMIC_DRAW); // option 3: orphaning + glMapBuffer glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * _filledVertex, nullptr, GL_DYNAMIC_DRAW); void *buf = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); memcpy(buf, _verts, sizeof(_verts[0])* _filledVertex); glUnmapBuffer(GL_ARRAY_BUFFER); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW); } else { #define kQuadSize sizeof(_verts[0]) glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * _filledVertex , _verts, GL_DYNAMIC_DRAW); GL::enableVertexAttribs(GL::VERTEX_ATTRIB_FLAG_POS_COLOR_TEX); // vertices glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices)); // colors glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors)); // tex coords glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW); } //Start drawing verties in batch for(const auto& cmd : _batchedCommands) { auto newMaterialID = cmd->getMaterialID(); if(_lastMaterialID != newMaterialID || newMaterialID == MATERIAL_ID_DO_NOT_BATCH) { //Draw quads if(indexToDraw > 0) { glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += indexToDraw; startIndex += indexToDraw; indexToDraw = 0; } //Use new material cmd->useMaterial(); _lastMaterialID = newMaterialID; } indexToDraw += cmd->getIndexCount(); } //Draw any remaining triangles if(indexToDraw > 0) { glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += indexToDraw; } if (Configuration::getInstance()->supportsShareableVAO()) { //Unbind VAO GL::bindVAO(0); } else { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } _batchedCommands.clear(); _filledVertex = 0; _filledIndex = 0; } void Renderer::drawBatchedQuads() { //TODO: we can improve the draw performance by insert material switching command before hand. ssize_t indexToDraw = 0; int startIndex = 0; //Upload buffer to VBO if(_numberQuads <= 0 || _batchQuadCommands.empty()) { return; } if (Configuration::getInstance()->supportsShareableVAO()) { //Bind VAO GL::bindVAO(_quadVAO); //Set VBO data glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]); // option 1: subdata // glBufferSubData(GL_ARRAY_BUFFER, sizeof(_quads[0])*start, sizeof(_quads[0]) * n , &_quads[start] ); // option 2: data // glBufferData(GL_ARRAY_BUFFER, sizeof(quads_[0]) * (n-start), &quads_[start], GL_DYNAMIC_DRAW); // option 3: orphaning + glMapBuffer glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * _numberQuads * 4, nullptr, GL_DYNAMIC_DRAW); void *buf = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); memcpy(buf, _quadVerts, sizeof(_quadVerts[0])* _numberQuads * 4); glUnmapBuffer(GL_ARRAY_BUFFER); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]); } else { #define kQuadSize sizeof(_verts[0]) glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * _numberQuads * 4 , _quadVerts, GL_DYNAMIC_DRAW); GL::enableVertexAttribs(GL::VERTEX_ATTRIB_FLAG_POS_COLOR_TEX); // vertices glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices)); // colors glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors)); // tex coords glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]); } // FIXME: The logic of this code is confusing, and error prone // Needs refactoring //Start drawing vertices in batch for(const auto& cmd : _batchQuadCommands) { bool commandQueued = true; auto newMaterialID = cmd->getMaterialID(); if(_lastMaterialID != newMaterialID || newMaterialID == MATERIAL_ID_DO_NOT_BATCH) { // flush buffer if(indexToDraw > 0) { glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += indexToDraw; startIndex += indexToDraw; indexToDraw = 0; } //Use new material _lastMaterialID = newMaterialID; cmd->useMaterial(); } if (commandQueued) { indexToDraw += cmd->getQuadCount() * 6; } } //Draw any remaining quad if(indexToDraw > 0) { glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) ); _drawnBatches++; _drawnVertices += indexToDraw; } if (Configuration::getInstance()->supportsShareableVAO()) { //Unbind VAO GL::bindVAO(0); } else { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } _batchQuadCommands.clear(); _numberQuads = 0; } void Renderer::flush() { flush2D(); flush3D(); } void Renderer::flush2D() { flushQuads(); flushTriangles(); } void Renderer::flush3D() { if (_lastBatchedMeshCommand) { _lastBatchedMeshCommand->postBatchDraw(); _lastBatchedMeshCommand = nullptr; } } void Renderer::flushQuads() { if(_numberQuads > 0) { drawBatchedQuads(); _lastMaterialID = 0; } } void Renderer::flushTriangles() { if(_filledIndex > 0) { drawBatchedTriangles(); _lastMaterialID = 0; } } // helpers bool Renderer::checkVisibility(const Mat4 &transform, const Size &size) { auto scene = Director::getInstance()->getRunningScene(); //If draw to Rendertexture, return true directly. // only cull the default camera. The culling algorithm is valid for default camera. if (!scene || (scene && scene->_defaultCamera != Camera::getVisitingCamera())) return true; auto director = Director::getInstance(); Rect visiableRect(director->getVisibleOrigin(), director->getVisibleSize()); // transform center point to screen space float hSizeX = size.width/2; float hSizeY = size.height/2; Vec3 v3p(hSizeX, hSizeY, 0); transform.transformPoint(&v3p); Vec2 v2p = Camera::getVisitingCamera()->projectGL(v3p); // convert content size to world coordinates float wshw = std::max(fabsf(hSizeX * transform.m[0] + hSizeY * transform.m[4]), fabsf(hSizeX * transform.m[0] - hSizeY * transform.m[4])); float wshh = std::max(fabsf(hSizeX * transform.m[1] + hSizeY * transform.m[5]), fabsf(hSizeX * transform.m[1] - hSizeY * transform.m[5])); // enlarge visible rect half size in screen coord visiableRect.origin.x -= wshw; visiableRect.origin.y -= wshh; visiableRect.size.width += wshw * 2; visiableRect.size.height += wshh * 2; bool ret = visiableRect.containsPoint(v2p); return ret; } void Renderer::setClearColor(const Color4F &clearColor) { _clearColor = clearColor; } NS_CC_END