/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. https://axis-project.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "2d/CCAutoPolygon.h" #include "poly2tri/poly2tri.h" #include "base/CCDirector.h" #include "renderer/CCTextureCache.h" #include "clipper/clipper.hpp" #include #include USING_NS_AX; static unsigned short quadIndices9[] = { 0 + 4 * 0, 1 + 4 * 0, 2 + 4 * 0, 3 + 4 * 0, 2 + 4 * 0, 1 + 4 * 0, 0 + 4 * 1, 1 + 4 * 1, 2 + 4 * 1, 3 + 4 * 1, 2 + 4 * 1, 1 + 4 * 1, 0 + 4 * 2, 1 + 4 * 2, 2 + 4 * 2, 3 + 4 * 2, 2 + 4 * 2, 1 + 4 * 2, 0 + 4 * 3, 1 + 4 * 3, 2 + 4 * 3, 3 + 4 * 3, 2 + 4 * 3, 1 + 4 * 3, 0 + 4 * 4, 1 + 4 * 4, 2 + 4 * 4, 3 + 4 * 4, 2 + 4 * 4, 1 + 4 * 4, 0 + 4 * 5, 1 + 4 * 5, 2 + 4 * 5, 3 + 4 * 5, 2 + 4 * 5, 1 + 4 * 5, 0 + 4 * 6, 1 + 4 * 6, 2 + 4 * 6, 3 + 4 * 6, 2 + 4 * 6, 1 + 4 * 6, 0 + 4 * 7, 1 + 4 * 7, 2 + 4 * 7, 3 + 4 * 7, 2 + 4 * 7, 1 + 4 * 7, 0 + 4 * 8, 1 + 4 * 8, 2 + 4 * 8, 3 + 4 * 8, 2 + 4 * 8, 1 + 4 * 8, }; const static float PRECISION = 10.0f; PolygonInfo::PolygonInfo() : _isVertsOwner(true), _rect(Rect::ZERO), _filename("") { triangles.verts = nullptr; triangles.indices = nullptr; triangles.vertCount = 0; triangles.indexCount = 0; }; PolygonInfo::PolygonInfo(const PolygonInfo& other) : triangles(), _isVertsOwner(true), _rect() { _filename = other._filename; _isVertsOwner = true; _rect = other._rect; triangles.verts = new V3F_C4B_T2F[other.triangles.vertCount]; triangles.indices = new unsigned short[other.triangles.indexCount]; AXASSERT(triangles.verts && triangles.indices, "not enough memory"); triangles.vertCount = other.triangles.vertCount; triangles.indexCount = other.triangles.indexCount; memcpy(triangles.verts, other.triangles.verts, other.triangles.vertCount * sizeof(other.triangles.verts[0])); memcpy(triangles.indices, other.triangles.indices, other.triangles.indexCount * sizeof(other.triangles.indices[0])); }; PolygonInfo& PolygonInfo::operator=(const PolygonInfo& other) { if (this != &other) { releaseVertsAndIndices(); _filename = other._filename; _isVertsOwner = true; _rect = other._rect; triangles.verts = new V3F_C4B_T2F[other.triangles.vertCount]; triangles.indices = new unsigned short[other.triangles.indexCount]; AXASSERT(triangles.verts && triangles.indices, "not enough memory"); triangles.vertCount = other.triangles.vertCount; triangles.indexCount = other.triangles.indexCount; memcpy(triangles.verts, other.triangles.verts, other.triangles.vertCount * sizeof(other.triangles.verts[0])); memcpy(triangles.indices, other.triangles.indices, other.triangles.indexCount * sizeof(other.triangles.indices[0])); } return *this; } PolygonInfo::~PolygonInfo() { releaseVertsAndIndices(); } void PolygonInfo::setQuad(V3F_C4B_T2F_Quad* quad) { releaseVertsAndIndices(); _isVertsOwner = false; triangles.indices = quadIndices9; triangles.vertCount = 4; triangles.indexCount = 6; triangles.verts = (V3F_C4B_T2F*)quad; } void PolygonInfo::setQuads(V3F_C4B_T2F_Quad* quad, int numberOfQuads) { AXASSERT(numberOfQuads >= 1 && numberOfQuads <= 9, "Invalid number of Quads"); releaseVertsAndIndices(); _isVertsOwner = false; triangles.indices = quadIndices9; triangles.vertCount = 4 * numberOfQuads; triangles.indexCount = 6 * numberOfQuads; triangles.verts = (V3F_C4B_T2F*)quad; } void PolygonInfo::setTriangles(const TrianglesCommand::Triangles& other) { this->releaseVertsAndIndices(); _isVertsOwner = false; this->triangles.vertCount = other.vertCount; this->triangles.indexCount = other.indexCount; this->triangles.verts = other.verts; this->triangles.indices = other.indices; } void PolygonInfo::releaseVertsAndIndices() { if (_isVertsOwner) { if (nullptr != triangles.verts) { AX_SAFE_DELETE_ARRAY(triangles.verts); } if (nullptr != triangles.indices) { AX_SAFE_DELETE_ARRAY(triangles.indices); } } } unsigned int PolygonInfo::getVertCount() const { return (unsigned int)triangles.vertCount; } unsigned int PolygonInfo::getTrianglesCount() const { return (unsigned int)triangles.indexCount / 3; } float PolygonInfo::getArea() const { float area = 0; V3F_C4B_T2F* verts = triangles.verts; unsigned short* indices = triangles.indices; for (unsigned int i = 0; i < triangles.indexCount; i += 3) { auto A = verts[indices[i]].vertices; auto B = verts[indices[i + 1]].vertices; auto C = verts[indices[i + 2]].vertices; area += (A.x * (B.y - C.y) + B.x * (C.y - A.y) + C.x * (A.y - B.y)) / 2; } return area; } AutoPolygon::AutoPolygon(std::string_view filename) : _image(nullptr), _data(nullptr), _filename(""), _width(0), _height(0), _scaleFactor(0) { _filename = filename; _image = new Image(); _image->initWithImageFile(filename); AXASSERT(_image->getPixelFormat() == backend::PixelFormat::RGBA8, "unsupported format, currently only supports rgba8888"); _data = _image->getData(); _width = _image->getWidth(); _height = _image->getHeight(); _scaleFactor = Director::getInstance()->getContentScaleFactor(); } AutoPolygon::~AutoPolygon() { AX_SAFE_DELETE(_image); } std::vector AutoPolygon::trace(const Rect& rect, float threshold) { Vec2 first = findFirstNoneTransparentPixel(rect, threshold); return marchSquare(rect, first, threshold); } Vec2 AutoPolygon::findFirstNoneTransparentPixel(const Rect& rect, float threshold) { bool found = false; Vec2 i; for (i.y = rect.origin.y; i.y < rect.origin.y + rect.size.height; i.y++) { if (found) break; for (i.x = rect.origin.x; i.x < rect.origin.x + rect.size.width; i.x++) { auto alpha = getAlphaByPos(i); if (alpha > threshold) { found = true; break; } } } AXASSERT(found, "image is all transparent!"); return i; } unsigned char AutoPolygon::getAlphaByIndex(unsigned int i) { return *(_data + i * 4 + 3); } unsigned char AutoPolygon::getAlphaByPos(const Vec2& pos) { return *(_data + ((int)pos.y * _width + (int)pos.x) * 4 + 3); } unsigned int AutoPolygon::getSquareValue(unsigned int x, unsigned int y, const Rect& rect, float threshold) { /* checking the 2x2 pixel grid, assigning these values to each pixel, if not transparent +---+---+ | 1 | 2 | +---+---+ | 4 | 8 | <- current pixel (curx,cury) +---+---+ */ unsigned int sv = 0; // NOTE: due to the way we pick points from texture, rect needs to be smaller, otherwise it goes outside 1 pixel auto fixedRect = Rect(rect.origin, rect.size - Vec2(2, 2)); Vec2 tl = Vec2(x - 1.0f, y - 1.0f); sv += (fixedRect.containsPoint(tl) && getAlphaByPos(tl) > threshold) ? 1 : 0; Vec2 tr = Vec2(x - 0.0f, y - 1.0f); sv += (fixedRect.containsPoint(tr) && getAlphaByPos(tr) > threshold) ? 2 : 0; Vec2 bl = Vec2(x - 1.0f, y - 0.0f); sv += (fixedRect.containsPoint(bl) && getAlphaByPos(bl) > threshold) ? 4 : 0; Vec2 br = Vec2(x - 0.0f, y - 0.0f); sv += (fixedRect.containsPoint(br) && getAlphaByPos(br) > threshold) ? 8 : 0; AXASSERT(sv != 0 && sv != 15, "square value should not be 0, or 15"); return sv; } std::vector AutoPolygon::marchSquare(const Rect& rect, const Vec2& start, float threshold) { int stepx = 0; int stepy = 0; int prevx = 0; int prevy = 0; int startx = (int)start.x; int starty = (int)start.y; int curx = startx; int cury = starty; unsigned int count = 0; std::vector case9s; std::vector case6s; int i; std::vector::iterator it; std::vector _points; do { int sv = getSquareValue(curx, cury, rect, threshold); switch (sv) { case 1: case 5: case 13: /* going UP with these cases: 1 5 13 +---+---+ +---+---+ +---+---+ | 1 | | | 1 | | | 1 | | +---+---+ +---+---+ +---+---+ | | | | 4 | | | 4 | 8 | +---+---+ +---+---+ +---+---+ */ stepx = 0; stepy = -1; break; case 8: case 10: case 11: /* going DOWN with these cases: 8 10 11 +---+---+ +---+---+ +---+---+ | | | | | 2 | | 1 | 2 | +---+---+ +---+---+ +---+---+ | | 8 | | | 8 | | | 8 | +---+---+ +---+---+ +---+---+ */ stepx = 0; stepy = 1; break; case 4: case 12: case 14: /* going LEFT with these cases: 4 12 14 +---+---+ +---+---+ +---+---+ | | | | | | | | 2 | +---+---+ +---+---+ +---+---+ | 4 | | | 4 | 8 | | 4 | 8 | +---+---+ +---+---+ +---+---+ */ stepx = -1; stepy = 0; break; case 2: case 3: case 7: /* going RIGHT with these cases: 2 3 7 +---+---+ +---+---+ +---+---+ | | 2 | | 1 | 2 | | 1 | 2 | +---+---+ +---+---+ +---+---+ | | | | | | | 4 | | +---+---+ +---+---+ +---+---+ */ stepx = 1; stepy = 0; break; case 9: /* +---+---+ | 1 | | +---+---+ | | 8 | +---+---+ this should normally go UP, but if we already been here, we go down */ // find index from xy; i = getIndexFromPos(curx, cury); it = find(case9s.begin(), case9s.end(), i); if (it != case9s.end()) { // found, so we go down, and delete from case9s; stepx = 0; stepy = 1; case9s.erase(it); } else { // not found, we go up, and add to case9s; stepx = 0; stepy = -1; case9s.push_back(i); } break; case 6: /* 6 +---+---+ | | 2 | +---+---+ | 4 | | +---+---+ this normally go RIGHT, but if its coming from UP, it should go LEFT */ i = getIndexFromPos(curx, cury); it = find(case6s.begin(), case6s.end(), i); if (it != case6s.end()) { // found, so we go down, and delete from case9s; stepx = -1; stepy = 0; case6s.erase(it); } else { // not found, we go up, and add to case9s; stepx = 1; stepy = 0; case6s.push_back(i); } break; default: AXLOG("this shouldn't happen."); } // little optimization // if previous direction is same as current direction, // then we should modify the last vec to current curx += stepx; cury += stepy; if (stepx == prevx && stepy == prevy) { _points.back().x = (float)(curx - rect.origin.x) / _scaleFactor; _points.back().y = (float)(rect.size.height - cury + rect.origin.y) / _scaleFactor; } else { _points.push_back(Vec2((float)(curx - rect.origin.x) / _scaleFactor, (float)(rect.size.height - cury + rect.origin.y) / _scaleFactor)); } count++; prevx = stepx; prevy = stepy; #if defined(AXIS_DEBUG) && (AXIS_DEBUG > 0) const auto totalPixel = _width * _height; AXASSERT(count <= totalPixel, "oh no, marching square cannot find starting position"); #endif } while (curx != startx || cury != starty); return _points; } float AutoPolygon::perpendicularDistance(const axis::Vec2& i, const axis::Vec2& start, const axis::Vec2& end) { float res; float slope; float intercept; if (start.x == end.x) { res = fabsf(i.x - end.x); } else if (start.y == end.y) { res = fabsf(i.y - end.y); } else { slope = (end.y - start.y) / (end.x - start.x); intercept = start.y - (slope * start.x); res = fabsf(slope * i.x - i.y + intercept) / sqrtf(powf(slope, 2) + 1); } return res; } std::vector AutoPolygon::rdp(const std::vector& v, float optimization) { if (v.size() < 3) return v; int index = -1; float dist = 0; // not looping first and last point for (size_t i = 1, size = v.size(); i < size - 1; ++i) { float cdist = perpendicularDistance(v[i], v.front(), v.back()); if (cdist > dist) { dist = cdist; index = static_cast(i); } } if (dist > optimization) { std::vector::const_iterator begin = v.begin(); std::vector::const_iterator end = v.end(); std::vector l1(begin, begin + index + 1); std::vector l2(begin + index, end); std::vector r1 = rdp(l1, optimization); std::vector r2 = rdp(l2, optimization); r1.insert(r1.end(), r2.begin() + 1, r2.end()); return r1; } else { std::vector ret; ret.push_back(v.front()); ret.push_back(v.back()); return ret; } } std::vector AutoPolygon::reduce(const std::vector& points, const Rect& rect, float epsilon) { auto size = points.size(); // if there are less than 3 points, then we have nothing if (size < 3) { log("AUTOPOLYGON: cannot reduce points for %s that has less than 3 points in input, e: %f", _filename.c_str(), epsilon); return std::vector(); } // if there are less than 9 points (but more than 3), then we don't need to reduce it else if (size < 9) { log("AUTOPOLYGON: cannot reduce points for %s e: %f", _filename.c_str(), epsilon); return points; } float maxEp = MIN(rect.size.width, rect.size.height); float ep = clampf(epsilon, 0.0, maxEp / _scaleFactor / 2); std::vector result = rdp(points, ep); auto last = result.back(); if (last.y > result.front().y && last.getDistance(result.front()) < ep * 0.5f) { result.front().y = last.y; result.pop_back(); } return result; } std::vector AutoPolygon::expand(const std::vector& points, const axis::Rect& rect, float epsilon) { auto size = points.size(); // if there are less than 3 points, then we have nothing if (size < 3) { log("AUTOPOLYGON: cannot expand points for %s with less than 3 points, e: %f", _filename.c_str(), epsilon); return std::vector(); } ClipperLib::Path subj; ClipperLib::PolyTree solution; ClipperLib::PolyTree out; for (const auto& pt : points) { subj << ClipperLib::IntPoint(static_cast(pt.x * PRECISION), static_cast(pt.y * PRECISION)); } ClipperLib::ClipperOffset co; co.AddPath(subj, ClipperLib::jtMiter, ClipperLib::etClosedPolygon); co.Execute(solution, epsilon * PRECISION); ClipperLib::PolyNode* p = solution.GetFirst(); if (!p) { log("AUTOPOLYGON: Clipper failed to expand the points"); return points; } while (p->IsHole()) { p = p->GetNext(); } // turn the result into simply polygon (AKA, fix overlap) // clamp into the specified rect ClipperLib::Clipper cl; cl.StrictlySimple(true); cl.AddPath(p->Contour, ClipperLib::ptSubject, true); // create the clipping rect ClipperLib::Path clamp; clamp.push_back(ClipperLib::IntPoint(0, 0)); clamp.push_back(ClipperLib::IntPoint(static_cast(rect.size.width / _scaleFactor * PRECISION), 0)); clamp.push_back(ClipperLib::IntPoint(static_cast(rect.size.width / _scaleFactor * PRECISION), static_cast(rect.size.height / _scaleFactor * PRECISION))); clamp.push_back( ClipperLib::IntPoint(0, static_cast(rect.size.height / _scaleFactor * PRECISION))); cl.AddPath(clamp, ClipperLib::ptClip, true); cl.Execute(ClipperLib::ctIntersection, out); std::vector outPoints; ClipperLib::PolyNode* p2 = out.GetFirst(); while (p2->IsHole()) { p2 = p2->GetNext(); } for (const auto& pt : p2->Contour) { outPoints.push_back(Vec2(pt.X / PRECISION, pt.Y / PRECISION)); } return outPoints; } TrianglesCommand::Triangles AutoPolygon::triangulate(const std::vector& points) { // if there are less than 3 points, then we can't triangulate if (points.size() < 3) { log("AUTOPOLYGON: cannot triangulate %s with less than 3 points", _filename.c_str()); return TrianglesCommand::Triangles(); } std::vector p2points; for (const auto& pt : points) { p2t::Point* p = new p2t::Point(pt.x, pt.y); p2points.push_back(p); } p2t::CDT cdt(p2points); cdt.Triangulate(); std::vector tris = cdt.GetTriangles(); // we won't know the size of verts and indices until we process all of the triangles! std::vector verts; std::vector indices; unsigned short idx = 0; unsigned short vdx = 0; for (const auto& ite : tris) { for (int i = 0; i < 3; ++i) { auto p = ite->GetPoint(i); auto v3 = Vec3((float)p->x, (float)p->y, 0); bool found = false; unsigned short j; auto length = vdx; for (j = 0; j < length; j++) { if (verts[j].vertices == v3) { found = true; break; } } if (found) { // if we found the same vertex, don't add to verts, but use the same vertex with indices indices.push_back(j); idx++; } else { // vert does not exist yet, so we need to create a new one, auto c4b = Color4B::WHITE; auto t2f = Tex2F(0, 0); // don't worry about tex coords now, we calculate that later V3F_C4B_T2F vert = {v3, c4b, t2f}; verts.push_back(vert); indices.push_back(vdx); idx++; vdx++; } } } for (auto j : p2points) { delete j; }; // now that we know the size of verts and indices we can create the buffers V3F_C4B_T2F* vertsBuf = new V3F_C4B_T2F[verts.size()]; memcpy(vertsBuf, verts.data(), verts.size() * sizeof(V3F_C4B_T2F)); unsigned short* indicesBuf = new unsigned short[indices.size()]; memcpy(indicesBuf, indices.data(), indices.size() * sizeof(short)); // Triangles should really use std::vector and not arrays for verts and indices. // Then the above memcpy would not be necessary TrianglesCommand::Triangles triangles = {vertsBuf, indicesBuf, (unsigned int)verts.size(), (unsigned int)indices.size()}; return triangles; } void AutoPolygon::calculateUV(const Rect& rect, V3F_C4B_T2F* verts, ssize_t count) { /* whole texture UV coordination 0,0 1,0 +---------------------+ | |0.1 | |0.2 | +--------+ |0.3 | |texRect | |0.4 | | | |0.5 | | | |0.6 | +--------+ |0.7 | |0.8 | |0.9 +---------------------+ 0,1 1,1 */ AXASSERT(_width && _height, "please specify width and height for this AutoPolygon instance"); auto texWidth = _width; auto texHeight = _height; auto end = &verts[count]; for (auto i = verts; i != end; ++i) { // for every point, offset with the center point float u = (i->vertices.x * _scaleFactor + rect.origin.x) / texWidth; float v = (rect.origin.y + rect.size.height - i->vertices.y * _scaleFactor) / texHeight; i->texCoords.u = u; i->texCoords.v = v; } } Rect AutoPolygon::getRealRect(const Rect& rect) { Rect realRect = rect; // check rect to see if its zero if (realRect.equals(Rect::ZERO)) { // if the instance doesn't have width and height, then the whole operation is kaput AXASSERT(_height && _width, "Please specify a width and height for this instance before using its functions"); realRect = Rect(0, 0, (float)_width, (float)_height); } else { // rect is specified, so convert to real rect realRect = AX_RECT_POINTS_TO_PIXELS(rect); } return realRect; } PolygonInfo AutoPolygon::generateTriangles(const Rect& rect, float epsilon, float threshold) { Rect realRect = getRealRect(rect); auto p = trace(realRect, threshold); p = reduce(p, realRect, epsilon); p = expand(p, realRect, epsilon); auto tri = triangulate(p); calculateUV(realRect, tri.verts, tri.vertCount); PolygonInfo ret; ret.triangles = tri; ret.setFilename(_filename); ret.setRect(realRect); return ret; } PolygonInfo AutoPolygon::generatePolygon(std::string_view filename, const Rect& rect, float epsilon, float threshold) { AutoPolygon ap(filename); return ap.generateTriangles(rect, epsilon, threshold); }