/**************************************************************************** Copyright (c) 2013 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCPhysicsBody.h" #if CC_USE_PHYSICS #include #include #include #include "chipmunk.h" #include "CCNode.h" #include "CCPhysicsShape.h" #include "CCPhysicsJoint.h" #include "CCPhysicsWorld.h" #include "chipmunk/CCPhysicsBodyInfo_chipmunk.h" #include "chipmunk/CCPhysicsJointInfo_chipmunk.h" #include "chipmunk/CCPhysicsWorldInfo_chipmunk.h" #include "chipmunk/CCPhysicsShapeInfo_chipmunk.h" #include "chipmunk/CCPhysicsHelper_chipmunk.h" NS_CC_BEGIN extern const float PHYSICS_INFINITY; namespace { static const float MASS_DEFAULT = 1.0; static const float MOMENT_DEFAULT = 200; } PhysicsBody::PhysicsBody() : _node(nullptr) , _world(nullptr) , _info(nullptr) , _dynamic(true) , _enabled(true) , _rotationEnabled(true) , _gravityEnabled(true) , _massDefault(true) , _momentDefault(true) , _mass(MASS_DEFAULT) , _area(0.0f) , _density(0.0f) , _moment(MOMENT_DEFAULT) , _isDamping(false) , _linearDamping(0.0f) , _angularDamping(0.0f) , _tag(0) , _categoryBitmask(UINT_MAX) , _collisionBitmask(0) , _contactTestBitmask(UINT_MAX) , _group(0) , _positionResetTag(false) , _rotationResetTag(false) , _rotationOffset(0) { } PhysicsBody::~PhysicsBody() { for (auto it = _joints.begin(); it != _joints.end(); ++it) { PhysicsJoint* joint = *it; PhysicsBody* other = joint->getBodyA() == this ? joint->getBodyB() : joint->getBodyA(); other->removeJoint(joint); delete joint; } CC_SAFE_DELETE(_info); } PhysicsBody* PhysicsBody::create() { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::create(float mass) { PhysicsBody* body = new PhysicsBody(); if (body) { body->_mass = mass; body->_massDefault = false; if (body->init()) { body->autorelease(); return body; } } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::create(float mass, float moment) { PhysicsBody* body = new PhysicsBody(); if (body) { body->_mass = mass; body->_massDefault = false; body->_moment = moment; body->_momentDefault = false; if (body->init()) { body->autorelease(); return body; } } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createCircle(float radius, const PhysicsMaterial& material, const Vector2& offset) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeCircle::create(radius, material, offset)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createBox(const Size& size, const PhysicsMaterial& material, const Vector2& offset) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeBox::create(size, material, offset)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createPolygon(const Vector2* points, int count, const PhysicsMaterial& material, const Vector2& offset) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapePolygon::create(points, count, material, offset)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeSegment(const Vector2& a, const Vector2& b, const PhysicsMaterial& material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeSegment::create(a, b, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeBox(const Size& size, const PhysicsMaterial& material, float border/* = 1*/, const Vector2& offset) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeBox::create(size, material, border, offset)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgePolygon(const Vector2* points, int count, const PhysicsMaterial& material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgePolygon::create(points, count, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeChain(const Vector2* points, int count, const PhysicsMaterial& material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeChain::create(points, count, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } bool PhysicsBody::init() { do { _info = new PhysicsBodyInfo(); CC_BREAK_IF(_info == nullptr); _info->setBody(cpBodyNew(PhysicsHelper::float2cpfloat(_mass), PhysicsHelper::float2cpfloat(_moment))); CC_BREAK_IF(_info->getBody() == nullptr); return true; } while (false); return false; } void PhysicsBody::removeJoint(PhysicsJoint* joint) { auto it = std::find(_joints.begin(), _joints.end(), joint); if (it != _joints.end()) { _joints.erase(it); } } void PhysicsBody::setDynamic(bool dynamic) { if (dynamic != _dynamic) { _dynamic = dynamic; if (dynamic) { cpBodySetMass(_info->getBody(), _mass); cpBodySetMoment(_info->getBody(), _moment); if (_world != nullptr) { // reset the gravity enable if (isGravityEnabled()) { _gravityEnabled = false; setGravityEnable(true); } cpSpaceAddBody(_world->_info->getSpace(), _info->getBody()); } } else { if (_world != nullptr) { cpSpaceRemoveBody(_world->_info->getSpace(), _info->getBody()); } // avoid incorrect collion simulation. cpBodySetMass(_info->getBody(), PHYSICS_INFINITY); cpBodySetMoment(_info->getBody(), PHYSICS_INFINITY); cpBodySetVel(_info->getBody(), cpvzero); cpBodySetAngVel(_info->getBody(), 0.0f); resetForces(); } } } void PhysicsBody::setRotationEnable(bool enable) { if (_rotationEnabled != enable) { cpBodySetMoment(_info->getBody(), enable ? _moment : PHYSICS_INFINITY); _rotationEnabled = enable; } } void PhysicsBody::setGravityEnable(bool enable) { if (_gravityEnabled != enable) { _gravityEnabled = enable; if (_world != nullptr) { if (enable) { applyForce(_world->getGravity() * _mass); }else { applyForce(-_world->getGravity() * _mass); } } } } void PhysicsBody::setPosition(Vector2 position) { if (!_positionResetTag) { cpBodySetPos(_info->getBody(), PhysicsHelper::point2cpv(position + _positionOffset)); } } void PhysicsBody::setRotation(float rotation) { if (!_rotationResetTag) { cpBodySetAngle(_info->getBody(), -PhysicsHelper::float2cpfloat((rotation + _rotationOffset) * (M_PI / 180.0f))); } } Vector2 PhysicsBody::getPosition() const { cpVect vec = cpBodyGetPos(_info->getBody()); return PhysicsHelper::cpv2point(vec) - _positionOffset; } float PhysicsBody::getRotation() const { return -PhysicsHelper::cpfloat2float(cpBodyGetAngle(_info->getBody()) * (180.0f / M_PI)) - _rotationOffset; } PhysicsShape* PhysicsBody::addShape(PhysicsShape* shape, bool addMassAndMoment/* = true*/) { if (shape == nullptr) return nullptr; // add shape to body if (_shapes.getIndex(shape) == -1) { shape->setBody(this); // calculate the area, mass, and desity // area must update before mass, because the density changes depend on it. if (addMassAndMoment) { _area += shape->getArea(); addMass(shape->getMass()); addMoment(shape->getMoment()); } if (_world != nullptr) { _world->addShape(shape); } _shapes.pushBack(shape); if (_group != CP_NO_GROUP && shape->getGroup() == CP_NO_GROUP) { shape->setGroup(_group); } } return shape; } void PhysicsBody::applyForce(const Vect& force) { applyForce(force, Vector2::ZERO); } void PhysicsBody::applyForce(const Vect& force, const Vector2& offset) { if (_dynamic && _mass != PHYSICS_INFINITY) { cpBodyApplyForce(_info->getBody(), PhysicsHelper::point2cpv(force), PhysicsHelper::point2cpv(offset)); } } void PhysicsBody::resetForces() { cpBodyResetForces(_info->getBody()); // if _gravityEnabled is false, add a reverse of gravity force to body if (_world != nullptr && _dynamic && !_gravityEnabled && _mass != PHYSICS_INFINITY) { applyForce(-_world->getGravity() * _mass); } } void PhysicsBody::applyImpulse(const Vect& impulse) { applyImpulse(impulse, Vector2()); } void PhysicsBody::applyImpulse(const Vect& impulse, const Vector2& offset) { cpBodyApplyImpulse(_info->getBody(), PhysicsHelper::point2cpv(impulse), PhysicsHelper::point2cpv(offset)); } void PhysicsBody::applyTorque(float torque) { cpBodySetTorque(_info->getBody(), PhysicsHelper::float2cpfloat(torque)); } void PhysicsBody::setMass(float mass) { if (mass <= 0) { return; } int oldMass = _mass; _mass = mass; _massDefault = false; // update density if (_mass == PHYSICS_INFINITY) { _density = PHYSICS_INFINITY; } else { if (_area > 0) { _density = _mass / _area; }else { _density = 0; } } // the static body's mass and moment is always infinity if (_dynamic) { updateMass(oldMass, _mass); } } void PhysicsBody::addMass(float mass) { float oldMass = _mass; if (mass == PHYSICS_INFINITY) { _mass = PHYSICS_INFINITY; _massDefault = false; _density = PHYSICS_INFINITY; } else if (mass == -PHYSICS_INFINITY) { return; } else { if (_massDefault) { _mass = 0; _massDefault = false; } if (_mass + mass > 0) { _mass += mass; }else { _mass = MASS_DEFAULT; _massDefault = true; } if (_area > 0) { _density = _mass / _area; } else { _density = 0; } } // the static body's mass and moment is always infinity if (_dynamic) { updateMass(oldMass, _mass); } } void PhysicsBody::addMoment(float moment) { if (moment == PHYSICS_INFINITY) { // if moment is PHYSICS_INFINITY, the moment of the body will become PHYSICS_INFINITY _moment = PHYSICS_INFINITY; _momentDefault = false; } else if (moment == -PHYSICS_INFINITY) { return; } else { // if moment of the body is PHYSICS_INFINITY is has no effect if (_moment != PHYSICS_INFINITY) { if (_momentDefault) { _moment = 0; _momentDefault = false; } if (_moment + moment > 0) { _moment += moment; } else { _moment = MOMENT_DEFAULT; _momentDefault = true; } } } // the static body's mass and moment is always infinity if (_rotationEnabled && _dynamic) { cpBodySetMoment(_info->getBody(), PhysicsHelper::float2cpfloat(_moment)); } } void PhysicsBody::setVelocity(const Vector2& velocity) { if (!_dynamic) { CCLOG("physics warning: your can't set velocity for a static body."); return; } cpBodySetVel(_info->getBody(), PhysicsHelper::point2cpv(velocity)); } Vector2 PhysicsBody::getVelocity() { return PhysicsHelper::cpv2point(cpBodyGetVel(_info->getBody())); } Vector2 PhysicsBody::getVelocityAtLocalPoint(const Vector2& point) { return PhysicsHelper::cpv2point(cpBodyGetVelAtLocalPoint(_info->getBody(), PhysicsHelper::point2cpv(point))); } Vector2 PhysicsBody::getVelocityAtWorldPoint(const Vector2& point) { return PhysicsHelper::cpv2point(cpBodyGetVelAtWorldPoint(_info->getBody(), PhysicsHelper::point2cpv(point))); } void PhysicsBody::setAngularVelocity(float velocity) { if (!_dynamic) { CCLOG("physics warning: your can't set angular velocity for a static body."); return; } cpBodySetAngVel(_info->getBody(), PhysicsHelper::float2cpfloat(velocity)); } float PhysicsBody::getAngularVelocity() { return PhysicsHelper::cpfloat2float(cpBodyGetAngVel(_info->getBody())); } void PhysicsBody::setVelocityLimit(float limit) { cpBodySetVelLimit(_info->getBody(), PhysicsHelper::float2cpfloat(limit)); } float PhysicsBody::getVelocityLimit() { return PhysicsHelper::cpfloat2float(cpBodyGetVelLimit(_info->getBody())); } void PhysicsBody::setAngularVelocityLimit(float limit) { cpBodySetAngVelLimit(_info->getBody(), PhysicsHelper::float2cpfloat(limit)); } float PhysicsBody::getAngularVelocityLimit() { return PhysicsHelper::cpfloat2float(cpBodyGetAngVelLimit(_info->getBody())); } void PhysicsBody::setMoment(float moment) { _moment = moment; _momentDefault = false; // the static body's mass and moment is always infinity if (_rotationEnabled && _dynamic) { cpBodySetMoment(_info->getBody(), PhysicsHelper::float2cpfloat(_moment)); } } PhysicsShape* PhysicsBody::getShape(int tag) const { for (auto& shape : _shapes) { if (shape->getTag() == tag) { return shape; } } return nullptr; } void PhysicsBody::removeShape(int tag, bool reduceMassAndMoment/* = true*/) { for (auto& shape : _shapes) { if (shape->getTag() == tag) { removeShape(shape, reduceMassAndMoment); return; } } } void PhysicsBody::removeShape(PhysicsShape* shape, bool reduceMassAndMoment/* = true*/) { if (_shapes.getIndex(shape) != -1) { // deduce the area, mass and moment // area must update before mass, because the density changes depend on it. if (reduceMassAndMoment) { _area -= shape->getArea(); addMass(-shape->getMass()); addMoment(-shape->getMoment()); } //remove if (_world) { _world->removeShape(shape); } // set shape->_body = nullptr make the shape->setBody will not trigger the _body->removeShape function call. shape->_body = nullptr; shape->setBody(nullptr); _shapes.eraseObject(shape); } } void PhysicsBody::removeAllShapes(bool reduceMassAndMoment/* = true*/) { for (auto& child : _shapes) { PhysicsShape* shape = dynamic_cast(child); // deduce the area, mass and moment // area must update before mass, because the density changes depend on it. if (reduceMassAndMoment) { _area -= shape->getArea(); addMass(-shape->getMass()); addMoment(-shape->getMoment()); } if (_world) { _world->removeShape(shape); } // set shape->_body = nullptr make the shape->setBody will not trigger the _body->removeShape function call. shape->_body = nullptr; shape->setBody(nullptr); } _shapes.clear(); } void PhysicsBody::removeFromWorld() { if (_world) { _world->removeBody(this); } } void PhysicsBody::setEnable(bool enable) { if (_enabled != enable) { _enabled = enable; if (_world) { if (enable) { _world->addBodyOrDelay(this); }else { _world->removeBodyOrDelay(this); } } } } bool PhysicsBody::isResting() const { return CP_PRIVATE(_info->getBody()->node).root != ((cpBody*)0); } void PhysicsBody::setResting(bool rest) const { if (rest && !isResting()) { cpBodySleep(_info->getBody()); }else if(!rest && isResting()) { cpBodyActivate(_info->getBody()); } } void PhysicsBody::update(float delta) { if (_node != nullptr) { Node* parent = _node->getParent(); Vector2 position = parent != nullptr ? parent->convertToNodeSpace(Vector2(getPosition())) : Vector2(getPosition()); _positionResetTag = true; _rotationResetTag = true; _node->setPosition(position); _node->setRotation(getRotation()); _positionResetTag = false; _rotationResetTag = false; // damping compute if (_isDamping && _dynamic && !isResting()) { _info->getBody()->v.x *= cpfclamp(1.0f - delta * _linearDamping, 0.0f, 1.0f); _info->getBody()->v.y *= cpfclamp(1.0f - delta * _linearDamping, 0.0f, 1.0f); _info->getBody()->w *= cpfclamp(1.0f - delta * _angularDamping, 0.0f, 1.0f); } } } void PhysicsBody::setCategoryBitmask(int bitmask) { _categoryBitmask = bitmask; for (auto& shape : _shapes) { shape->setCategoryBitmask(bitmask); } } void PhysicsBody::setContactTestBitmask(int bitmask) { _contactTestBitmask = bitmask; for (auto& shape : _shapes) { shape->setContactTestBitmask(bitmask); } } void PhysicsBody::setCollisionBitmask(int bitmask) { _collisionBitmask = bitmask; for (auto& shape : _shapes) { shape->setCollisionBitmask(bitmask); } } void PhysicsBody::setGroup(int group) { for (auto& shape : _shapes) { shape->setGroup(group); } } void PhysicsBody::setPositionOffset(const Vector2& position) { if (!_positionOffset.equals(position)) { Vector2 pos = getPosition(); _positionOffset = position; setPosition(pos); } } Vector2 PhysicsBody::getPositionOffset() const { return _positionOffset; } void PhysicsBody::setRotationOffset(float rotation) { if (std::abs(_rotationOffset - rotation) > 0.5f) { float rot = getRotation(); _rotationOffset = rotation; setRotation(rot); } } float PhysicsBody::getRotationOffset() const { return _rotationOffset; } Vector2 PhysicsBody::world2Local(const Vector2& point) { return PhysicsHelper::cpv2point(cpBodyWorld2Local(_info->getBody(), PhysicsHelper::point2cpv(point))); } Vector2 PhysicsBody::local2World(const Vector2& point) { return PhysicsHelper::cpv2point(cpBodyLocal2World(_info->getBody(), PhysicsHelper::point2cpv(point))); } void PhysicsBody::updateMass(float oldMass, float newMass) { if (_dynamic && !_gravityEnabled && _world != nullptr && oldMass != PHYSICS_INFINITY) { applyForce(_world->getGravity() * oldMass); } cpBodySetMass(_info->getBody(), newMass); if (_dynamic && !_gravityEnabled && _world != nullptr && newMass != PHYSICS_INFINITY) { applyForce(-_world->getGravity() * newMass); } } NS_CC_END #endif // CC_USE_PHYSICS