/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include "alc/effects/base.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/bufferline.h" #include "core/context.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/mixer.h" #include "core/mixer/defs.h" #include "core/resampler_limits.h" #include "intrusive_ptr.h" #include "opthelpers.h" namespace { using uint = unsigned int; struct ChorusState final : public EffectState { std::vector mDelayBuffer; uint mOffset{0}; uint mLfoOffset{0}; uint mLfoRange{1}; float mLfoScale{0.0f}; uint mLfoDisp{0}; /* Calculated delays to apply to the left and right outputs. */ uint mModDelays[2][BufferLineSize]; /* Temp storage for the modulated left and right outputs. */ alignas(16) float mBuffer[2][BufferLineSize]; /* Gains for left and right outputs. */ struct { float Current[MaxAmbiChannels]{}; float Target[MaxAmbiChannels]{}; } mGains[2]; /* effect parameters */ ChorusWaveform mWaveform{}; int mDelay{0}; float mDepth{0.0f}; float mFeedback{0.0f}; void calcTriangleDelays(const size_t todo); void calcSinusoidDelays(const size_t todo); void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ChorusState) }; void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*) { constexpr float max_delay{maxf(ChorusMaxDelay, FlangerMaxDelay)}; const auto frequency = static_cast(Device->Frequency); const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)}; if(maxlen != mDelayBuffer.size()) decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer); std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f); for(auto &e : mGains) { std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); } } void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot, const EffectProps *props, const EffectTarget target) { constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits}; /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ const DeviceBase *device{Context->mDevice}; const auto frequency = static_cast(device->Frequency); mWaveform = props->Chorus.Waveform; mDelay = maxi(float2int(props->Chorus.Delay*frequency*MixerFracOne + 0.5f), mindelay); mDepth = minf(props->Chorus.Depth * static_cast(mDelay), static_cast(mDelay - mindelay)); mFeedback = props->Chorus.Feedback; /* Gains for left and right sides */ static constexpr auto inv_sqrt2 = static_cast(1.0 / al::numbers::sqrt2); static constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f}); static constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f}); static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2}); static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2}); auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw; auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw; mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, lcoeffs.data(), Slot->Gain, mGains[0].Target); ComputePanGains(target.Main, rcoeffs.data(), Slot->Gain, mGains[1].Target); float rate{props->Chorus.Rate}; if(!(rate > 0.0f)) { mLfoOffset = 0; mLfoRange = 1; mLfoScale = 0.0f; mLfoDisp = 0; } else { /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))}; mLfoOffset = mLfoOffset * lfo_range / mLfoRange; mLfoRange = lfo_range; switch(mWaveform) { case ChorusWaveform::Triangle: mLfoScale = 4.0f / static_cast(mLfoRange); break; case ChorusWaveform::Sinusoid: mLfoScale = al::numbers::pi_v*2.0f / static_cast(mLfoRange); break; } /* Calculate lfo phase displacement */ int phase{props->Chorus.Phase}; if(phase < 0) phase = 360 + phase; mLfoDisp = (mLfoRange*static_cast(phase) + 180) / 360; } } void ChorusState::calcTriangleDelays(const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; ASSUME(lfo_range > 0); ASSUME(todo > 0); auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint { const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay); }; uint offset{mLfoOffset}; for(size_t i{0};i < todo;) { size_t rem{minz(todo-i, lfo_range-offset)}; do { mModDelays[0][i++] = gen_lfo(offset++); } while(--rem); if(offset == lfo_range) offset = 0; } offset = (mLfoOffset+mLfoDisp) % lfo_range; for(size_t i{0};i < todo;) { size_t rem{minz(todo-i, lfo_range-offset)}; do { mModDelays[1][i++] = gen_lfo(offset++); } while(--rem); if(offset == lfo_range) offset = 0; } mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::calcSinusoidDelays(const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; ASSUME(lfo_range > 0); ASSUME(todo > 0); auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint { const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i(std::sin(offset_norm)*depth) + delay); }; uint offset{mLfoOffset}; for(size_t i{0};i < todo;) { size_t rem{minz(todo-i, lfo_range-offset)}; do { mModDelays[0][i++] = gen_lfo(offset++); } while(--rem); if(offset == lfo_range) offset = 0; } offset = (mLfoOffset+mLfoDisp) % lfo_range; for(size_t i{0};i < todo;) { size_t rem{minz(todo-i, lfo_range-offset)}; do { mModDelays[1][i++] = gen_lfo(offset++); } while(--rem); if(offset == lfo_range) offset = 0; } mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t bufmask{mDelayBuffer.size()-1}; const float feedback{mFeedback}; const uint avgdelay{(static_cast(mDelay) + MixerFracHalf) >> MixerFracBits}; float *RESTRICT delaybuf{mDelayBuffer.data()}; uint offset{mOffset}; if(mWaveform == ChorusWaveform::Sinusoid) calcSinusoidDelays(samplesToDo); else /*if(mWaveform == ChorusWaveform::Triangle)*/ calcTriangleDelays(samplesToDo); const uint *RESTRICT ldelays{mModDelays[0]}; const uint *RESTRICT rdelays{mModDelays[1]}; float *RESTRICT lbuffer{al::assume_aligned<16>(mBuffer[0])}; float *RESTRICT rbuffer{al::assume_aligned<16>(mBuffer[1])}; for(size_t i{0u};i < samplesToDo;++i) { // Feed the buffer's input first (necessary for delays < 1). delaybuf[offset&bufmask] = samplesIn[0][i]; // Tap for the left output. uint delay{offset - (ldelays[i]>>MixerFracBits)}; float mu{static_cast(ldelays[i]&MixerFracMask) * (1.0f/MixerFracOne)}; lbuffer[i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Tap for the right output. delay = offset - (rdelays[i]>>MixerFracBits); mu = static_cast(rdelays[i]&MixerFracMask) * (1.0f/MixerFracOne); rbuffer[i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Accumulate feedback from the average delay of the taps. delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; ++offset; } MixSamples({lbuffer, samplesToDo}, samplesOut, mGains[0].Current, mGains[0].Target, samplesToDo, 0); MixSamples({rbuffer, samplesToDo}, samplesOut, mGains[1].Current, mGains[1].Target, samplesToDo, 0); mOffset = offset; } struct ChorusStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ChorusState{}}; } }; /* Flanger is basically a chorus with a really short delay. They can both use * the same processing functions, so piggyback flanger on the chorus functions. */ struct FlangerStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ChorusState{}}; } }; } // namespace EffectStateFactory *ChorusStateFactory_getFactory() { static ChorusStateFactory ChorusFactory{}; return &ChorusFactory; } EffectStateFactory *FlangerStateFactory_getFactory() { static FlangerStateFactory FlangerFactory{}; return &FlangerFactory; }