/* * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef B2_WELD_JOINT_H #define B2_WELD_JOINT_H #include /// Weld joint definition. You need to specify local anchor points /// where they are attached and the relative body angle. The position /// of the anchor points is important for computing the reaction torque. struct b2WeldJointDef : public b2JointDef { b2WeldJointDef() { type = e_weldJoint; localAnchorA.Set(0.0f, 0.0f); localAnchorB.Set(0.0f, 0.0f); referenceAngle = 0.0f; } /// Initialize the bodies, anchors, and reference angle using a world /// anchor point. void Initialize(b2Body* body1, b2Body* body2, const b2Vec2& anchor); /// The local anchor point relative to body1's origin. b2Vec2 localAnchorA; /// The local anchor point relative to body2's origin. b2Vec2 localAnchorB; /// The body2 angle minus body1 angle in the reference state (radians). float32 referenceAngle; }; /// A weld joint essentially glues two bodies together. A weld joint may /// distort somewhat because the island constraint solver is approximate. class b2WeldJoint : public b2Joint { public: b2Vec2 GetAnchorA() const; b2Vec2 GetAnchorB() const; b2Vec2 GetReactionForce(float32 inv_dt) const; float32 GetReactionTorque(float32 inv_dt) const; protected: friend class b2Joint; b2WeldJoint(const b2WeldJointDef* def); void InitVelocityConstraints(const b2TimeStep& step); void SolveVelocityConstraints(const b2TimeStep& step); bool SolvePositionConstraints(float32 baumgarte); b2Vec2 m_localAnchorA; b2Vec2 m_localAnchorB; float32 m_referenceAngle; b2Vec3 m_impulse; b2Mat33 m_mass; }; #endif