/* * Copyright (C) 2014 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define LOG_TAG "mp3reader" #include #include #include #include #include #include "audio/android/cutils/log.h" #include "pvmp3decoder_api.h" #include "audio/android/mp3reader.h" using namespace std; static uint32_t U32_AT(const uint8_t *ptr) { return ptr[0] << 24 | ptr[1] << 16 | ptr[2] << 8 | ptr[3]; } static bool parseHeader( uint32_t header, size_t *frame_size, uint32_t *out_sampling_rate = NULL, uint32_t *out_channels = NULL , uint32_t *out_bitrate = NULL, uint32_t *out_num_samples = NULL) { *frame_size = 0; if (out_sampling_rate) { *out_sampling_rate = 0; } if (out_channels) { *out_channels = 0; } if (out_bitrate) { *out_bitrate = 0; } if (out_num_samples) { *out_num_samples = 1152; } if ((header & 0xffe00000) != 0xffe00000) { return false; } unsigned version = (header >> 19) & 3; if (version == 0x01) { return false; } unsigned layer = (header >> 17) & 3; if (layer == 0x00) { return false; } unsigned bitrate_index = (header >> 12) & 0x0f; if (bitrate_index == 0 || bitrate_index == 0x0f) { // Disallow "free" bitrate. return false; } unsigned sampling_rate_index = (header >> 10) & 3; if (sampling_rate_index == 3) { return false; } static const int kSamplingRateV1[] = { 44100, 48000, 32000 }; int sampling_rate = kSamplingRateV1[sampling_rate_index]; if (version == 2 /* V2 */) { sampling_rate /= 2; } else if (version == 0 /* V2.5 */) { sampling_rate /= 4; } unsigned padding = (header >> 9) & 1; if (layer == 3) { // layer I static const int kBitrateV1[] = { 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448 }; static const int kBitrateV2[] = { 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256 }; int bitrate = (version == 3 /* V1 */) ? kBitrateV1[bitrate_index - 1] : kBitrateV2[bitrate_index - 1]; if (out_bitrate) { *out_bitrate = bitrate; } *frame_size = (12000 * bitrate / sampling_rate + padding) * 4; if (out_num_samples) { *out_num_samples = 384; } } else { // layer II or III static const int kBitrateV1L2[] = { 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384 }; static const int kBitrateV1L3[] = { 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320 }; static const int kBitrateV2[] = { 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160 }; int bitrate; if (version == 3 /* V1 */) { bitrate = (layer == 2 /* L2 */) ? kBitrateV1L2[bitrate_index - 1] : kBitrateV1L3[bitrate_index - 1]; if (out_num_samples) { *out_num_samples = 1152; } } else { // V2 (or 2.5) bitrate = kBitrateV2[bitrate_index - 1]; if (out_num_samples) { *out_num_samples = (layer == 1 /* L3 */) ? 576 : 1152; } } if (out_bitrate) { *out_bitrate = bitrate; } if (version == 3 /* V1 */) { *frame_size = 144000 * bitrate / sampling_rate + padding; } else { // V2 or V2.5 size_t tmp = (layer == 1 /* L3 */) ? 72000 : 144000; *frame_size = tmp * bitrate / sampling_rate + padding; } } if (out_sampling_rate) { *out_sampling_rate = sampling_rate; } if (out_channels) { int channel_mode = (header >> 6) & 3; *out_channels = (channel_mode == 3) ? 1 : 2; } return true; } // Mask to extract the version, layer, sampling rate parts of the MP3 header, // which should be same for all MP3 frames. static const uint32_t kMask = 0xfffe0c00; static ssize_t sourceReadAt(mp3_callbacks *callback, void* source, off64_t offset, void *data, size_t size) { int retVal = callback->seek(source, offset, SEEK_SET); if (retVal != EXIT_SUCCESS) { return 0; } else { return callback->read(data, 1, size, source); } } // Resync to next valid MP3 frame in the file. static bool resync( mp3_callbacks *callback, void* source, uint32_t match_header, off64_t *inout_pos, uint32_t *out_header) { if (*inout_pos == 0) { // Skip an optional ID3 header if syncing at the very beginning // of the datasource. for (;;) { uint8_t id3header[10]; int retVal = sourceReadAt(callback, source, *inout_pos, id3header, sizeof(id3header)); if (retVal < (ssize_t)sizeof(id3header)) { // If we can't even read these 10 bytes, we might as well bail // out, even if there _were_ 10 bytes of valid mp3 audio data... return false; } if (memcmp("ID3", id3header, 3)) { break; } // Skip the ID3v2 header. size_t len = ((id3header[6] & 0x7f) << 21) | ((id3header[7] & 0x7f) << 14) | ((id3header[8] & 0x7f) << 7) | (id3header[9] & 0x7f); len += 10; *inout_pos += len; ALOGV("skipped ID3 tag, new starting offset is %lld (0x%016llx)", (long long)*inout_pos, (long long)*inout_pos); } } off64_t pos = *inout_pos; bool valid = false; const int32_t kMaxReadBytes = 1024; const int32_t kMaxBytesChecked = 128 * 1024; uint8_t buf[kMaxReadBytes]; ssize_t bytesToRead = kMaxReadBytes; ssize_t totalBytesRead = 0; ssize_t remainingBytes = 0; bool reachEOS = false; uint8_t *tmp = buf; do { if (pos >= (off64_t)(*inout_pos + kMaxBytesChecked)) { // Don't scan forever. ALOGV("giving up at offset %lld", (long long)pos); break; } if (remainingBytes < 4) { if (reachEOS) { break; } else { memcpy(buf, tmp, remainingBytes); bytesToRead = kMaxReadBytes - remainingBytes; /* * The next read position should start from the end of * the last buffer, and thus should include the remaining * bytes in the buffer. */ totalBytesRead = sourceReadAt(callback, source, pos + remainingBytes, buf + remainingBytes, bytesToRead); if (totalBytesRead <= 0) { break; } reachEOS = (totalBytesRead != bytesToRead); remainingBytes += totalBytesRead; tmp = buf; continue; } } uint32_t header = U32_AT(tmp); if (match_header != 0 && (header & kMask) != (match_header & kMask)) { ++pos; ++tmp; --remainingBytes; continue; } size_t frame_size; uint32_t sample_rate, num_channels, bitrate; if (!parseHeader( header, &frame_size, &sample_rate, &num_channels, &bitrate)) { ++pos; ++tmp; --remainingBytes; continue; } // ALOGV("found possible 1st frame at %lld (header = 0x%08x)", (long long)pos, header); // We found what looks like a valid frame, // now find its successors. off64_t test_pos = pos + frame_size; valid = true; const int FRAME_MATCH_REQUIRED = 3; for (int j = 0; j < FRAME_MATCH_REQUIRED; ++j) { uint8_t tmp[4]; ssize_t retval = sourceReadAt(callback, source, test_pos, tmp, sizeof(tmp)); if (retval < (ssize_t)sizeof(tmp)) { valid = false; break; } uint32_t test_header = U32_AT(tmp); ALOGV("subsequent header is %08x", test_header); if ((test_header & kMask) != (header & kMask)) { valid = false; break; } size_t test_frame_size; if (!parseHeader(test_header, &test_frame_size)) { valid = false; break; } ALOGV("found subsequent frame #%d at %lld", j + 2, (long long)test_pos); test_pos += test_frame_size; } if (valid) { *inout_pos = pos; if (out_header != NULL) { *out_header = header; } } else { ALOGV("no dice, no valid sequence of frames found."); } ++pos; ++tmp; --remainingBytes; } while (!valid); return valid; } Mp3Reader::Mp3Reader() : mSource(NULL), mCallback(NULL) { } // Initialize the MP3 reader. bool Mp3Reader::init(mp3_callbacks *callback, void* source) { mSource = source; mCallback = callback; // Open the file. // mFp = fopen(file, "rb"); // if (mFp == NULL) return false; // Sync to the first valid frame. off64_t pos = 0; uint32_t header; bool success = resync(callback, source, 0 /*match_header*/, &pos, &header); if (!success) { ALOGE("%s, resync failed", __FUNCTION__); return false; } mCurrentPos = pos; mFixedHeader = header; size_t frame_size; return parseHeader(header, &frame_size, &mSampleRate, &mNumChannels, &mBitrate); } // Get the next valid MP3 frame. bool Mp3Reader::getFrame(void *buffer, uint32_t *size) { size_t frame_size; uint32_t bitrate; uint32_t num_samples; uint32_t sample_rate; for (;;) { ssize_t n = sourceReadAt(mCallback, mSource, mCurrentPos, buffer, 4); if (n < 4) { return false; } uint32_t header = U32_AT((const uint8_t *)buffer); if ((header & kMask) == (mFixedHeader & kMask) && parseHeader( header, &frame_size, &sample_rate, NULL /*out_channels*/, &bitrate, &num_samples)) { break; } // Lost sync. off64_t pos = mCurrentPos; if (!resync(mCallback, mSource, mFixedHeader, &pos, NULL /*out_header*/)) { // Unable to resync. Signalling end of stream. return false; } mCurrentPos = pos; // Try again with the new position. } ssize_t n = sourceReadAt(mCallback, mSource, mCurrentPos, buffer, frame_size); if (n < (ssize_t)frame_size) { return false; } *size = frame_size; mCurrentPos += frame_size; return true; } // Close the MP3 reader. void Mp3Reader::close() { assert(mCallback != NULL); mCallback->close(mSource); } Mp3Reader::~Mp3Reader() { } enum { kInputBufferSize = 10 * 1024, kOutputBufferSize = 4608 * 2, }; int decodeMP3(mp3_callbacks* cb, void* source, std::vector& pcmBuffer, int* numChannels, int* sampleRate, int* numFrames) { // Initialize the config. tPVMP3DecoderExternal config; config.equalizerType = flat; config.crcEnabled = false; // Allocate the decoder memory. uint32_t memRequirements = pvmp3_decoderMemRequirements(); void *decoderBuf = malloc(memRequirements); assert(decoderBuf != NULL); // Initialize the decoder. pvmp3_InitDecoder(&config, decoderBuf); // Open the input file. Mp3Reader mp3Reader; bool success = mp3Reader.init(cb, source); if (!success) { ALOGE("mp3Reader.init: Encountered error reading\n"); free(decoderBuf); return EXIT_FAILURE; } // Open the output file. // SF_INFO sfInfo; // memset(&sfInfo, 0, sizeof(SF_INFO)); // sfInfo.channels = mp3Reader.getNumChannels(); // sfInfo.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16; // sfInfo.samplerate = mp3Reader.getSampleRate(); // SNDFILE *handle = sf_open(argv[2], SFM_WRITE, &sfInfo); // if (handle == NULL) { // ALOGE("Encountered error writing %s\n", argv[2]); // mp3Reader.close(); // free(decoderBuf); // return EXIT_FAILURE; // } // Allocate input buffer. uint8_t *inputBuf = static_cast(malloc(kInputBufferSize)); assert(inputBuf != NULL); // Allocate output buffer. int16_t *outputBuf = static_cast(malloc(kOutputBufferSize)); assert(outputBuf != NULL); // Decode loop. int retVal = EXIT_SUCCESS; while (1) { // Read input from the file. uint32_t bytesRead; bool success = mp3Reader.getFrame(inputBuf, &bytesRead); if (!success) break; *numChannels = mp3Reader.getNumChannels(); *sampleRate = mp3Reader.getSampleRate(); // Set the input config. config.inputBufferCurrentLength = bytesRead; config.inputBufferMaxLength = 0; config.inputBufferUsedLength = 0; config.pInputBuffer = inputBuf; config.pOutputBuffer = outputBuf; config.outputFrameSize = kOutputBufferSize / sizeof(int16_t); ERROR_CODE decoderErr; decoderErr = pvmp3_framedecoder(&config, decoderBuf); if (decoderErr != NO_DECODING_ERROR) { ALOGE("Decoder encountered error=%d", decoderErr); retVal = EXIT_FAILURE; break; } pcmBuffer.insert(pcmBuffer.end(), (char*)outputBuf, ((char*)outputBuf) + config.outputFrameSize * 2); *numFrames += config.outputFrameSize / mp3Reader.getNumChannels(); } // Close input reader and output writer. mp3Reader.close(); // sf_close(handle); // Free allocated memory. free(inputBuf); free(outputBuf); free(decoderBuf); return retVal; }