/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. Copyright (c) 2021 Bytedance Inc. https://adxeproject.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // #include "2d/CCParticleSystem.h" #include #include "2d/CCParticleBatchNode.h" #include "renderer/CCTextureAtlas.h" #include "base/base64.h" #include "base/ZipUtils.h" #include "base/CCDirector.h" #include "base/CCProfiling.h" #include "base/ccUTF8.h" #include "base/ccUtils.h" #include "renderer/CCTextureCache.h" #include "platform/CCFileUtils.h" using namespace std; NS_CC_BEGIN // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // inline void normalize_point(float x, float y, particle_point* out) { float n = x * x + y * y; // Already normalized. if (n == 1.0f) return; n = sqrt(n); // Too close to zero. if (n < MATH_TOLERANCE) return; n = 1.0f / n; out->x = x * n; out->y = y * n; } /** A more effective random number generator function that fixes strafing for position variance, made by kiss rng. KEEP IT SIMPLE STUPID (KISS) rng example: https://gist.github.com/3ki5tj/7b1d51e96d1f9bfb89bc Generates a random number between 0.0 to 1.0 INCLUSIVE. */ inline static float RANDOM_KISS_ABS(void) { #define kiss_znew(z) (z = 36969 * (z & 65535) + (z >> 16)) #define kiss_wnew(w) (w = 18000 * (w & 65535) + (w >> 16)) #define kiss_MWC(z, w) ((kiss_znew(z) << 16) + kiss_wnew(w)) #define kiss_SHR3(jsr) (jsr ^= (jsr << 17), jsr ^= (jsr >> 13), jsr ^= (jsr << 5)) #define kiss_CONG(jc) (jc = 69069 * jc + 1234567) #define kiss_KISS(z, w, jc, jsr) ((kiss_MWC(z, w) ^ kiss_CONG(jc)) + kiss_SHR3(jsr)) static unsigned kiss_z = rand(), kiss_w = rand(), kiss_jsr = rand(), kiss_jcong = rand(); return kiss_KISS(kiss_z, kiss_w, kiss_jcong, kiss_jsr) / 4294967296.0; } /** A more effective random number generator function that fixes strafing for position variance, made by kiss rng. KEEP IT SIMPLE STUPID (KISS) rng example: https://gist.github.com/3ki5tj/7b1d51e96d1f9bfb89bc Generates a random number between -1.0 and 1.0 INCLUSIVE. */ inline static float RANDOM_KISS(void) { return -1.0F + RANDOM_KISS_ABS() + RANDOM_KISS_ABS(); } ParticleData::ParticleData() { memset(this, 0, sizeof(ParticleData)); } bool ParticleData::init(int count) { maxCount = count; posx = (float*)malloc(count * sizeof(float)); posy = (float*)malloc(count * sizeof(float)); startPosX = (float*)malloc(count * sizeof(float)); startPosY = (float*)malloc(count * sizeof(float)); colorR = (float*)malloc(count * sizeof(float)); colorG = (float*)malloc(count * sizeof(float)); colorB = (float*)malloc(count * sizeof(float)); colorA = (float*)malloc(count * sizeof(float)); deltaColorR = (float*)malloc(count * sizeof(float)); deltaColorG = (float*)malloc(count * sizeof(float)); deltaColorB = (float*)malloc(count * sizeof(float)); deltaColorA = (float*)malloc(count * sizeof(float)); size = (float*)malloc(count * sizeof(float)); deltaSize = (float*)malloc(count * sizeof(float)); rotation = (float*)malloc(count * sizeof(float)); staticRotation = (float*)malloc(count * sizeof(float)); deltaRotation = (float*)malloc(count * sizeof(float)); totalTimeToLive = (float*)malloc(count * sizeof(float)); timeToLive = (float*)malloc(count * sizeof(float)); atlasIndex = (unsigned int*)malloc(count * sizeof(unsigned int)); modeA.dirX = (float*)malloc(count * sizeof(float)); modeA.dirY = (float*)malloc(count * sizeof(float)); modeA.radialAccel = (float*)malloc(count * sizeof(float)); modeA.tangentialAccel = (float*)malloc(count * sizeof(float)); modeB.angle = (float*)malloc(count * sizeof(float)); modeB.degreesPerSecond = (float*)malloc(count * sizeof(float)); modeB.deltaRadius = (float*)malloc(count * sizeof(float)); modeB.radius = (float*)malloc(count * sizeof(float)); return posx && posy && startPosX && startPosY && colorR && colorG && colorB && colorA && deltaColorR && deltaColorG && deltaColorB && deltaColorA && size && deltaSize && rotation && staticRotation && deltaRotation && totalTimeToLive && timeToLive && atlasIndex && modeA.dirX && modeA.dirY && modeA.radialAccel && modeA.tangentialAccel && modeB.angle && modeB.degreesPerSecond && modeB.deltaRadius && modeB.radius; } void ParticleData::release() { CC_SAFE_FREE(posx); CC_SAFE_FREE(posy); CC_SAFE_FREE(startPosX); CC_SAFE_FREE(startPosY); CC_SAFE_FREE(colorR); CC_SAFE_FREE(colorG); CC_SAFE_FREE(colorB); CC_SAFE_FREE(colorA); CC_SAFE_FREE(deltaColorR); CC_SAFE_FREE(deltaColorG); CC_SAFE_FREE(deltaColorB); CC_SAFE_FREE(deltaColorA); CC_SAFE_FREE(hue); CC_SAFE_FREE(sat); CC_SAFE_FREE(val); CC_SAFE_FREE(opacityFadeInDelta); CC_SAFE_FREE(opacityFadeInLength); CC_SAFE_FREE(scaleInDelta); CC_SAFE_FREE(scaleInLength); CC_SAFE_FREE(size); CC_SAFE_FREE(deltaSize); CC_SAFE_FREE(rotation); CC_SAFE_FREE(staticRotation); CC_SAFE_FREE(deltaRotation); CC_SAFE_FREE(totalTimeToLive); CC_SAFE_FREE(timeToLive); CC_SAFE_FREE(animTimeLength); CC_SAFE_FREE(animTimeDelta); CC_SAFE_FREE(animIndex); CC_SAFE_FREE(animCellIndex); CC_SAFE_FREE(atlasIndex); CC_SAFE_FREE(modeA.dirX); CC_SAFE_FREE(modeA.dirY); CC_SAFE_FREE(modeA.radialAccel); CC_SAFE_FREE(modeA.tangentialAccel); CC_SAFE_FREE(modeB.angle); CC_SAFE_FREE(modeB.degreesPerSecond); CC_SAFE_FREE(modeB.deltaRadius); CC_SAFE_FREE(modeB.radius); } Vector ParticleSystem::__allInstances; float ParticleSystem::__totalParticleCountFactor = 1.0f; ParticleSystem::ParticleSystem() : _isBlendAdditive(false) , _isAutoRemoveOnFinish(false) , _plistFile("") , _elapsed(0) , _configName("") , _emitCounter(0) , _batchNode(nullptr) , _atlasIndex(0) , _transformSystemDirty(false) , _allocatedParticles(0) , _isAnimAllocated(false) , _isHSVAllocated(false) , _isOpacityFadeInAllocated(false) , _isScaleInAllocated(false) , _isActive(true) , _particleCount(0) , _duration(0) , _life(0) , _lifeVar(0) , _angle(0) , _angleVar(0) , _emitterMode(Mode::GRAVITY) , _startSize(0) , _startSizeVar(0) , _endSize(0) , _endSizeVar(0) , _startSpin(0) , _startSpinVar(0) , _endSpin(0) , _endSpinVar(0) , _spawnAngle(0) , _spawnAngleVar(0) , _hsv(0, 1, 1) , _hsvVar(0, 0, 0) , _spawnFadeIn(0) , _spawnFadeInVar(0) , _spawnScaleIn(0) , _spawnScaleInVar(0) , _emissionRate(0) , _totalParticles(0) , _texture(nullptr) , _blendFunc(BlendFunc::ALPHA_PREMULTIPLIED) , _opacityModifyRGB(false) , _isLifeAnimated(false) , _isEmitterAnimated(false) , _isLoopAnimated(false) , _animIndexCount(0) , _isAnimationReversed(false) , _undefinedIndexRect({0, 0, 0, 0}) , _animationTimescaleInd(false) , _yCoordFlipped(1) , _isEmissionShapes(false) , _emissionShapeIndex(0) , _positionType(PositionType::FREE) , _paused(false) , _updatePaused(false) , _timeScale(1) , _fixedFPS(0) , _fixedFPSDelta(0) , _sourcePositionCompatible(true) // In the furture this member's default value maybe false or be removed. { modeA.gravity.setZero(); modeA.speed = 0; modeA.speedVar = 0; modeA.tangentialAccel = 0; modeA.tangentialAccelVar = 0; modeA.radialAccel = 0; modeA.radialAccelVar = 0; modeA.rotationIsDir = false; modeB.startRadius = 0; modeB.startRadiusVar = 0; modeB.endRadius = 0; modeB.endRadiusVar = 0; modeB.rotatePerSecond = 0; modeB.rotatePerSecondVar = 0; } // implementation ParticleSystem ParticleSystem* ParticleSystem::create(std::string_view plistFile) { ParticleSystem* ret = new ParticleSystem(); if (ret->initWithFile(plistFile)) { ret->autorelease(); return ret; } CC_SAFE_DELETE(ret); return ret; } ParticleSystem* ParticleSystem::createWithTotalParticles(int numberOfParticles) { ParticleSystem* ret = new ParticleSystem(); if (ret->initWithTotalParticles(numberOfParticles)) { ret->autorelease(); return ret; } CC_SAFE_DELETE(ret); return ret; } // static Vector& ParticleSystem::getAllParticleSystems() { return __allInstances; } bool ParticleSystem::allocAnimationMem() { if (!_isAnimAllocated) { _particleData.animTimeLength = (float*)malloc(_totalParticles * sizeof(float)); _particleData.animTimeDelta = (float*)malloc(_totalParticles * sizeof(float)); _particleData.animIndex = (unsigned short*)malloc(_totalParticles * sizeof(unsigned short)); _particleData.animCellIndex = (unsigned short*)malloc(_totalParticles * sizeof(unsigned short)); if (_particleData.animTimeLength && _particleData.animTimeDelta && _particleData.animIndex && _particleData.animCellIndex) return _isAnimAllocated = true; else // If any of the above allocations fail, then we safely deallocate the ones that succeeded. deallocAnimationMem(); } return false; } void ParticleSystem::deallocAnimationMem() { CC_SAFE_FREE(_particleData.animTimeLength); CC_SAFE_FREE(_particleData.animTimeDelta); CC_SAFE_FREE(_particleData.animIndex); CC_SAFE_FREE(_particleData.animCellIndex); _isAnimAllocated = false; } bool ParticleSystem::allocHSVMem() { if (!_isHSVAllocated) { _particleData.hue = (float*)malloc(_totalParticles * sizeof(float)); _particleData.sat = (float*)malloc(_totalParticles * sizeof(float)); _particleData.val = (float*)malloc(_totalParticles * sizeof(float)); if (_particleData.hue && _particleData.sat && _particleData.val) return _isHSVAllocated = true; else // If any of the above allocations fail, then we safely deallocate the ones that succeeded. deallocHSVMem(); } return false; } void ParticleSystem::deallocHSVMem() { CC_SAFE_FREE(_particleData.hue); CC_SAFE_FREE(_particleData.sat); CC_SAFE_FREE(_particleData.val); _isHSVAllocated = false; } bool ParticleSystem::allocOpacityFadeInMem() { if (!_isOpacityFadeInAllocated) { _particleData.opacityFadeInDelta = (float*)malloc(_totalParticles * sizeof(float)); _particleData.opacityFadeInLength = (float*)malloc(_totalParticles * sizeof(float)); if (_particleData.opacityFadeInDelta && _particleData.opacityFadeInLength) return _isOpacityFadeInAllocated = true; else // If any of the above allocations fail, then we safely deallocate the ones that succeeded. deallocOpacityFadeInMem(); } return false; } void ParticleSystem::deallocOpacityFadeInMem() { CC_SAFE_FREE(_particleData.opacityFadeInDelta); CC_SAFE_FREE(_particleData.opacityFadeInLength); _isOpacityFadeInAllocated = false; } bool ParticleSystem::allocScaleInMem() { if (!_isScaleInAllocated) { _particleData.scaleInDelta = (float*)malloc(_totalParticles * sizeof(float)); _particleData.scaleInLength = (float*)malloc(_totalParticles * sizeof(float)); if (_particleData.scaleInDelta && _particleData.scaleInLength) return _isScaleInAllocated = true; else // If any of the above allocations fail, then we safely deallocate the ones that succeeded. deallocScaleInMem(); } return false; } void ParticleSystem::deallocScaleInMem() { CC_SAFE_FREE(_particleData.scaleInDelta); CC_SAFE_FREE(_particleData.scaleInLength); _isScaleInAllocated = false; } void ParticleSystem::setTotalParticleCountFactor(float factor) { __totalParticleCountFactor = factor; } bool ParticleSystem::init() { return initWithTotalParticles(150); } bool ParticleSystem::initWithFile(std::string_view plistFile) { bool ret = false; _plistFile = FileUtils::getInstance()->fullPathForFilename(plistFile); ValueMap dict = FileUtils::getInstance()->getValueMapFromFile(_plistFile); CCASSERT(!dict.empty(), "Particles: file not found"); // FIXME: compute path from a path, should define a function somewhere to do it auto listFilePath = plistFile; if (listFilePath.find('/') != string::npos) { listFilePath = listFilePath.substr(0, listFilePath.rfind('/') + 1); ret = this->initWithDictionary(dict, listFilePath); } else { ret = this->initWithDictionary(dict, ""); } return ret; } bool ParticleSystem::initWithDictionary(const ValueMap& dictionary) { return initWithDictionary(dictionary, ""); } bool ParticleSystem::initWithDictionary(const ValueMap& dictionary, std::string_view dirname) { bool ret = false; unsigned char* buffer = nullptr; Image* image = nullptr; do { int maxParticles = optValue(dictionary, "maxParticles").asInt(); // self, not super if (this->initWithTotalParticles(maxParticles)) { // Emitter name in particle designer 2.0 _configName = optValue(dictionary, "configName").asString(); // angle _angle = optValue(dictionary, "angle").asFloat(); _angleVar = optValue(dictionary, "angleVariance").asFloat(); // duration _duration = optValue(dictionary, "duration").asFloat(); // blend function if (!_configName.empty()) { _blendFunc.src = utils::toBackendBlendFactor((int)optValue(dictionary, "blendFuncSource").asFloat()); } else { _blendFunc.src = utils::toBackendBlendFactor(optValue(dictionary, "blendFuncSource").asInt()); } _blendFunc.dst = utils::toBackendBlendFactor(optValue(dictionary, "blendFuncDestination").asInt()); // color _startColor.r = optValue(dictionary, "startColorRed").asFloat(); _startColor.g = optValue(dictionary, "startColorGreen").asFloat(); _startColor.b = optValue(dictionary, "startColorBlue").asFloat(); _startColor.a = optValue(dictionary, "startColorAlpha").asFloat(); _startColorVar.r = optValue(dictionary, "startColorVarianceRed").asFloat(); _startColorVar.g = optValue(dictionary, "startColorVarianceGreen").asFloat(); _startColorVar.b = optValue(dictionary, "startColorVarianceBlue").asFloat(); _startColorVar.a = optValue(dictionary, "startColorVarianceAlpha").asFloat(); _endColor.r = optValue(dictionary, "finishColorRed").asFloat(); _endColor.g = optValue(dictionary, "finishColorGreen").asFloat(); _endColor.b = optValue(dictionary, "finishColorBlue").asFloat(); _endColor.a = optValue(dictionary, "finishColorAlpha").asFloat(); _endColorVar.r = optValue(dictionary, "finishColorVarianceRed").asFloat(); _endColorVar.g = optValue(dictionary, "finishColorVarianceGreen").asFloat(); _endColorVar.b = optValue(dictionary, "finishColorVarianceBlue").asFloat(); _endColorVar.a = optValue(dictionary, "finishColorVarianceAlpha").asFloat(); // particle size _startSize = optValue(dictionary, "startParticleSize").asFloat(); _startSizeVar = optValue(dictionary, "startParticleSizeVariance").asFloat(); _endSize = optValue(dictionary, "finishParticleSize").asFloat(); _endSizeVar = optValue(dictionary, "finishParticleSizeVariance").asFloat(); // position float x = optValue(dictionary, "sourcePositionx").asFloat(); float y = optValue(dictionary, "sourcePositiony").asFloat(); if (!_sourcePositionCompatible) { this->setSourcePosition(Vec2(x, y)); } else { this->setPosition(Vec2(x, y)); } _posVar.x = optValue(dictionary, "sourcePositionVariancex").asFloat(); _posVar.y = optValue(dictionary, "sourcePositionVariancey").asFloat(); // Spinning _startSpin = optValue(dictionary, "rotationStart").asFloat(); _startSpinVar = optValue(dictionary, "rotationStartVariance").asFloat(); _endSpin = optValue(dictionary, "rotationEnd").asFloat(); _endSpinVar = optValue(dictionary, "rotationEndVariance").asFloat(); _emitterMode = (Mode)optValue(dictionary, "emitterType").asInt(); // Mode A: Gravity + tangential accel + radial accel if (_emitterMode == Mode::GRAVITY) { // gravity modeA.gravity.x = optValue(dictionary, "gravityx").asFloat(); modeA.gravity.y = optValue(dictionary, "gravityy").asFloat(); // speed modeA.speed = optValue(dictionary, "speed").asFloat(); modeA.speedVar = optValue(dictionary, "speedVariance").asFloat(); // radial acceleration modeA.radialAccel = optValue(dictionary, "radialAcceleration").asFloat(); modeA.radialAccelVar = optValue(dictionary, "radialAccelVariance").asFloat(); // tangential acceleration modeA.tangentialAccel = optValue(dictionary, "tangentialAcceleration").asFloat(); modeA.tangentialAccelVar = optValue(dictionary, "tangentialAccelVariance").asFloat(); // rotation is dir modeA.rotationIsDir = optValue(dictionary, "rotationIsDir").asBool(); } // or Mode B: radius movement else if (_emitterMode == Mode::RADIUS) { if (!_configName.empty()) { modeB.startRadius = optValue(dictionary, "maxRadius").asInt(); } else { modeB.startRadius = optValue(dictionary, "maxRadius").asFloat(); } modeB.startRadiusVar = optValue(dictionary, "maxRadiusVariance").asFloat(); if (!_configName.empty()) { modeB.endRadius = optValue(dictionary, "minRadius").asInt(); } else { modeB.endRadius = optValue(dictionary, "minRadius").asFloat(); } modeB.endRadiusVar = optValue(dictionary, "minRadiusVariance").asFloat(); if (!_configName.empty()) { modeB.rotatePerSecond = optValue(dictionary, "rotatePerSecond").asInt(); } else { modeB.rotatePerSecond = optValue(dictionary, "rotatePerSecond").asFloat(); } modeB.rotatePerSecondVar = optValue(dictionary, "rotatePerSecondVariance").asFloat(); } else { CCASSERT(false, "Invalid emitterType in config file"); CC_BREAK_IF(true); } // life span _life = optValue(dictionary, "particleLifespan").asFloat(); _lifeVar = optValue(dictionary, "particleLifespanVariance").asFloat(); // emission Rate _emissionRate = _totalParticles / _life; // don't get the internal texture if a batchNode is used if (!_batchNode) { // Set a compatible default for the alpha transfer _opacityModifyRGB = false; // texture // Try to get the texture from the cache std::string textureName = optValue(dictionary, "textureFileName").asString(); size_t rPos = textureName.rfind('/'); if (rPos != string::npos) { string textureDir = textureName.substr(0, rPos + 1); if (!dirname.empty() && textureDir != dirname) { textureName = textureName.substr(rPos + 1); textureName.insert(0, dirname); // textureName = dirname + textureName; } } else if (!dirname.empty() && !textureName.empty()) { textureName.insert(0, dirname); // textureName = dirname + textureName; } Texture2D* tex = nullptr; if (!textureName.empty()) { // set not pop-up message box when load image failed bool notify = FileUtils::getInstance()->isPopupNotify(); FileUtils::getInstance()->setPopupNotify(false); tex = _director->getTextureCache()->addImage(textureName); // reset the value of UIImage notify FileUtils::getInstance()->setPopupNotify(notify); } if (tex) { setTexture(tex); } else if (dictionary.find("textureImageData") != dictionary.end()) { std::string textureData = dictionary.at("textureImageData").asString(); CCASSERT(!textureData.empty(), "textureData can't be empty!"); auto dataLen = textureData.size(); if (dataLen != 0) { // if it fails, try to get it from the base64-gzipped data int decodeLen = base64Decode((unsigned char*)textureData.c_str(), (unsigned int)dataLen, &buffer); CCASSERT(buffer != nullptr, "CCParticleSystem: error decoding textureImageData"); CC_BREAK_IF(!buffer); unsigned char* deflated = nullptr; ssize_t deflatedLen = ZipUtils::inflateMemory(buffer, decodeLen, &deflated); CCASSERT(deflated != nullptr, "CCParticleSystem: error ungzipping textureImageData"); CC_BREAK_IF(!deflated); // For android, we should retain it in VolatileTexture::addImage which invoked in // Director::getInstance()->getTextureCache()->addUIImage() image = new Image(); bool isOK = image->initWithImageData(deflated, deflatedLen, true); CCASSERT(isOK, "CCParticleSystem: error init image with Data"); CC_BREAK_IF(!isOK); setTexture(_director->getTextureCache()->addImage(image, _plistFile + textureName)); image->release(); } } _yCoordFlipped = optValue(dictionary, "yCoordFlipped").asInt(1); if (!this->_texture) CCLOGWARN("cocos2d: Warning: ParticleSystemQuad system without a texture"); } ret = true; } } while (0); free(buffer); return ret; } bool ParticleSystem::initWithTotalParticles(int numberOfParticles) { _totalParticles = numberOfParticles; _particleData.release(); if (!_particleData.init(_totalParticles)) { CCLOG("Particle system: not enough memory"); this->release(); return false; } _allocatedParticles = numberOfParticles; if (_batchNode) { for (int i = 0; i < _totalParticles; i++) { _particleData.atlasIndex[i] = i; } } // default, active _isActive = true; // default blend function _blendFunc = BlendFunc::ALPHA_PREMULTIPLIED; // default movement type; _positionType = PositionType::FREE; // by default be in mode A: _emitterMode = Mode::GRAVITY; // default: modulate // FIXME:: not used // colorModulate = YES; _isAutoRemoveOnFinish = false; // Optimization: compile updateParticle method // updateParticleSel = @selector(updateQuadWithParticle:newPosition:); // updateParticleImp = (CC_UPDATE_PARTICLE_IMP) [self methodForSelector:updateParticleSel]; // for batchNode _transformSystemDirty = false; return true; } ParticleSystem::~ParticleSystem() { // Since the scheduler retains the "target (in this case the ParticleSystem) // it is not needed to call "unscheduleUpdate" here. In fact, it will be called in "cleanup" // unscheduleUpdate(); _particleData.release(); _animations.clear(); CC_SAFE_RELEASE(_texture); } void ParticleSystem::addParticles(int count, int animationIndex, int animationCellIndex) { if (_paused) return; // Try to add as many particles as possible without overflowing. count = MIN(int(_totalParticles * __totalParticleCountFactor) - _particleCount, count); animationCellIndex = MIN(animationCellIndex, _animIndexCount - 1); animationIndex = MIN(animationIndex, _animIndexCount - 1); int start = _particleCount; _particleCount += count; // life for (int i = start; i < _particleCount; ++i) { float particleLife = _life + _lifeVar * RANDOM_KISS(); _particleData.totalTimeToLive[i] = MAX(0, particleLife); _particleData.timeToLive[i] = MAX(0, particleLife); } if (_isEmissionShapes) { for (int i = start; i < _particleCount; ++i) { if (_emissionShapes.empty()) { _particleData.posx[i] = _sourcePosition.x + _posVar.x * RANDOM_KISS(); _particleData.posy[i] = _sourcePosition.y + _posVar.y * RANDOM_KISS(); continue; } auto randElem = RANDOM_KISS_ABS(); auto& shape = _emissionShapes[MIN(randElem * _emissionShapes.size(), _emissionShapes.size() - 1)]; switch (shape.type) { case EmissionShapeType::POINT: { _particleData.posx[i] = _sourcePosition.x + shape.x; _particleData.posy[i] = _sourcePosition.y + shape.y; break; } case EmissionShapeType::RECT: { _particleData.posx[i] = _sourcePosition.x + shape.x + shape.innerWidth / 2 * RANDOM_KISS(); _particleData.posy[i] = _sourcePosition.y + shape.y + shape.innerHeight / 2 * RANDOM_KISS(); break; } case EmissionShapeType::RECTTORUS: { float width = (shape.outerWidth - shape.innerWidth) * RANDOM_KISS_ABS() + shape.innerWidth; float height = (shape.outerHeight - shape.innerHeight) * RANDOM_KISS_ABS() + shape.innerHeight; width = RANDOM_KISS() < 0.0F ? width * -1 : width; height = RANDOM_KISS() < 0.0F ? height * -1 : height; float prob = RANDOM_KISS(); _particleData.posx[i] = _sourcePosition.x + shape.x + width / 2 * (prob >= 0.0F ? 1.0F : RANDOM_KISS()); _particleData.posy[i] = _sourcePosition.y + shape.y + height / 2 * (prob < 0.0F ? 1.0F : RANDOM_KISS()); break; } case EmissionShapeType::CIRCLE: { auto val = RANDOM_KISS_ABS() * shape.innerRadius / shape.innerRadius; val = powf(val, 1 / shape.edgeElasticity); auto point = Vec2(0.0F, val * shape.innerRadius); point = point.rotateByAngle(Vec2::ZERO, -CC_DEGREES_TO_RADIANS(shape.coneOffset + shape.coneAngle / 2 * RANDOM_KISS())); _particleData.posx[i] = _sourcePosition.x + shape.x + point.x / 2; _particleData.posy[i] = _sourcePosition.y + shape.y + point.y / 2; break; } case EmissionShapeType::TORUS: { auto val = RANDOM_KISS_ABS() * shape.outerRadius / shape.outerRadius; val = powf(val, 1 / shape.edgeElasticity); auto point = Vec2(0.0F, ((val * (shape.outerRadius - shape.innerRadius) + shape.outerRadius) - (shape.outerRadius - shape.innerRadius))); point = point.rotateByAngle(Vec2::ZERO, -CC_DEGREES_TO_RADIANS(shape.coneOffset + shape.coneAngle / 2 * RANDOM_KISS())); _particleData.posx[i] = _sourcePosition.x + shape.x + point.x / 2; _particleData.posy[i] = _sourcePosition.y + shape.y + point.y / 2; break; } case EmissionShapeType::ALPHA_MASK: { auto& mask = ParticleEmissionMaskCache::getInstance()->getEmissionMask(shape.maskName); Vec2 pos = {shape.x, shape.y}; Vec2 size = mask.size; Vec2 overrideSize = {shape.innerWidth, shape.innerHeight}; Vec2 scale = {shape.outerWidth, shape.outerHeight}; float angle = shape.coneOffset; if (overrideSize.isZero()) overrideSize = mask.size; Vec2 point = {0, 0}; int rand0 = RANDOM_KISS_ABS() * mask.points.size(); int index = MIN(rand0, mask.points.size() - 1); point = mask.points[index]; point -= size / 2; point.x = point.x / size.x * overrideSize.x * scale.x; point.y = point.y / size.y * overrideSize.y * scale.y; point = point.rotateByAngle(Vec2::ZERO, -CC_DEGREES_TO_RADIANS(angle)); _particleData.posx[i] = _sourcePosition.x + shape.x + point.x; _particleData.posy[i] = _sourcePosition.y + shape.y + point.y; break; } } } } else { // position for (int i = start; i < _particleCount; ++i) { _particleData.posx[i] = _sourcePosition.x + _posVar.x * RANDOM_KISS(); } for (int i = start; i < _particleCount; ++i) { _particleData.posy[i] = _sourcePosition.y + _posVar.y * RANDOM_KISS(); } } if (animationCellIndex != -1 || animationIndex != -1) allocAnimationMem(); if (_isAnimAllocated) { if (animationCellIndex != -1) std::fill_n(_particleData.animCellIndex + start, _particleCount - start, animationCellIndex); else std::fill_n(_particleData.animCellIndex + start, _particleCount - start, 0xFFFF); if (animationIndex != -1) { for (int i = start; i < _particleCount; ++i) { _particleData.animIndex[i] = animationIndex; auto& descriptor = _animations.at(animationIndex); _particleData.animTimeLength[i] = descriptor.animationSpeed + descriptor.animationSpeedVariance * RANDOM_KISS(); } } } if (_isLifeAnimated || _isEmitterAnimated || _isLoopAnimated) { if (animationCellIndex == -1 && _isEmitterAnimated) { for (int i = start; i < _particleCount; ++i) { int rand0 = RANDOM_KISS_ABS() * _animIndexCount; _particleData.animCellIndex[i] = MIN(rand0, _animIndexCount - 1); } } if (animationIndex == -1 && !_animations.empty()) { if (_randomAnimations.empty()) setMultiAnimationRandom(); for (int i = start; i < _particleCount; ++i) { int rand0 = RANDOM_KISS_ABS() * _randomAnimations.size(); int index = MIN(rand0, _randomAnimations.size() - 1); _particleData.animIndex[i] = _randomAnimations[index]; auto& descriptor = _animations.at(_particleData.animIndex[i]); _particleData.animTimeLength[i] = descriptor.animationSpeed + descriptor.animationSpeedVariance * RANDOM_KISS(); } } if (_isEmitterAnimated || _isLoopAnimated) std::fill_n(_particleData.animTimeDelta + start, _particleCount - start, 0); } // color #define SET_COLOR(c, b, v) \ for (int i = start; i < _particleCount; ++i) \ { \ c[i] = clampf(b + v * RANDOM_KISS(), 0, 1); \ } SET_COLOR(_particleData.colorR, _startColor.r, _startColorVar.r); SET_COLOR(_particleData.colorG, _startColor.g, _startColorVar.g); SET_COLOR(_particleData.colorB, _startColor.b, _startColorVar.b); SET_COLOR(_particleData.colorA, _startColor.a, _startColorVar.a); SET_COLOR(_particleData.deltaColorR, _endColor.r, _endColorVar.r); SET_COLOR(_particleData.deltaColorG, _endColor.g, _endColorVar.g); SET_COLOR(_particleData.deltaColorB, _endColor.b, _endColorVar.b); SET_COLOR(_particleData.deltaColorA, _endColor.a, _endColorVar.a); #define SET_DELTA_COLOR(c, dc) \ for (int i = start; i < _particleCount; ++i) \ { \ dc[i] = (dc[i] - c[i]) / _particleData.timeToLive[i]; \ } SET_DELTA_COLOR(_particleData.colorR, _particleData.deltaColorR); SET_DELTA_COLOR(_particleData.colorG, _particleData.deltaColorG); SET_DELTA_COLOR(_particleData.colorB, _particleData.deltaColorB); SET_DELTA_COLOR(_particleData.colorA, _particleData.deltaColorA); // opacity fade in if (_isOpacityFadeInAllocated) { for (int i = start; i < _particleCount; ++i) { _particleData.opacityFadeInLength[i] = _spawnFadeIn + _spawnFadeInVar * RANDOM_KISS(); } std::fill_n(_particleData.opacityFadeInDelta + start, _particleCount - start, 0.0F); } // scale fade in if (_isScaleInAllocated) { for (int i = start; i < _particleCount; ++i) { _particleData.scaleInLength[i] = _spawnScaleIn + _spawnScaleInVar * RANDOM_KISS(); } std::fill_n(_particleData.scaleInDelta + start, _particleCount - start, 0.0F); } // hue saturation value color if (_isHSVAllocated) { for (int i = start; i < _particleCount; ++i) { _particleData.hue[i] = _hsv.h + _hsvVar.h * RANDOM_KISS(); } for (int i = start; i < _particleCount; ++i) { _particleData.sat[i] = _hsv.s + _hsvVar.s * RANDOM_KISS(); } for (int i = start; i < _particleCount; ++i) { _particleData.val[i] = _hsv.v + _hsvVar.v * RANDOM_KISS(); } } // size for (int i = start; i < _particleCount; ++i) { _particleData.size[i] = _startSize + _startSizeVar * RANDOM_KISS(); _particleData.size[i] = MAX(0, _particleData.size[i]); } if (_endSize != START_SIZE_EQUAL_TO_END_SIZE) { for (int i = start; i < _particleCount; ++i) { float endSize = _endSize + _endSizeVar * RANDOM_KISS(); endSize = MAX(0, endSize); _particleData.deltaSize[i] = (endSize - _particleData.size[i]) / _particleData.timeToLive[i]; } } else std::fill_n(_particleData.deltaSize + start, _particleCount - start, 0.0F); // rotation for (int i = start; i < _particleCount; ++i) { _particleData.rotation[i] = _startSpin + _startSpinVar * RANDOM_KISS(); } for (int i = start; i < _particleCount; ++i) { float endA = _endSpin + _endSpinVar * RANDOM_KISS(); _particleData.deltaRotation[i] = (endA - _particleData.rotation[i]) / _particleData.timeToLive[i]; } // static rotation for (int i = start; i < _particleCount; ++i) { _particleData.staticRotation[i] = _spawnAngle + _spawnAngleVar * RANDOM_KISS(); } // position Vec2 pos; if (_positionType == PositionType::FREE) { pos = this->convertToWorldSpace(Vec2::ZERO); } else if (_positionType == PositionType::RELATIVE) { pos = _position; } std::fill_n(_particleData.startPosX + start, _particleCount - start, pos.x); std::fill_n(_particleData.startPosY + start, _particleCount - start, pos.y); // Mode Gravity: A if (_emitterMode == Mode::GRAVITY) { // radial accel for (int i = start; i < _particleCount; ++i) { _particleData.modeA.radialAccel[i] = modeA.radialAccel + modeA.radialAccelVar * RANDOM_KISS(); } // tangential accel for (int i = start; i < _particleCount; ++i) { _particleData.modeA.tangentialAccel[i] = modeA.tangentialAccel + modeA.tangentialAccelVar * RANDOM_KISS(); } // rotation is dir if (modeA.rotationIsDir) { for (int i = start; i < _particleCount; ++i) { float a = CC_DEGREES_TO_RADIANS(_angle + _angleVar * RANDOM_KISS()); Vec2 v(cosf(a), sinf(a)); float s = modeA.speed + modeA.speedVar * RANDOM_KISS(); Vec2 dir = v * s; _particleData.modeA.dirX[i] = dir.x; // v * s ; _particleData.modeA.dirY[i] = dir.y; _particleData.rotation[i] = -CC_RADIANS_TO_DEGREES(dir.getAngle()); } } else { for (int i = start; i < _particleCount; ++i) { float a = CC_DEGREES_TO_RADIANS(_angle + _angleVar * RANDOM_KISS()); Vec2 v(cosf(a), sinf(a)); float s = modeA.speed + modeA.speedVar * RANDOM_KISS(); Vec2 dir = v * s; _particleData.modeA.dirX[i] = dir.x; // v * s ; _particleData.modeA.dirY[i] = dir.y; } } } // Mode Radius: B else { // Need to check by Jacky // Set the default diameter of the particle from the source position for (int i = start; i < _particleCount; ++i) { _particleData.modeB.radius[i] = modeB.startRadius + modeB.startRadiusVar * RANDOM_KISS(); } for (int i = start; i < _particleCount; ++i) { _particleData.modeB.angle[i] = CC_DEGREES_TO_RADIANS(_angle + _angleVar * RANDOM_KISS()); } for (int i = start; i < _particleCount; ++i) { _particleData.modeB.degreesPerSecond[i] = CC_DEGREES_TO_RADIANS(modeB.rotatePerSecond + modeB.rotatePerSecondVar * RANDOM_KISS()); } if (modeB.endRadius == START_RADIUS_EQUAL_TO_END_RADIUS) std::fill_n(_particleData.modeB.deltaRadius + start, _particleCount - start, 0.0F); else { for (int i = start; i < _particleCount; ++i) { float endRadius = modeB.endRadius + modeB.endRadiusVar * RANDOM_KISS(); _particleData.modeB.deltaRadius[i] = (endRadius - _particleData.modeB.radius[i]) / _particleData.timeToLive[i]; } } } } void ParticleSystem::setAnimationDescriptor(unsigned short indexOfDescriptor, float time, float timeVariance, const std::vector& indices, bool reverse) { auto iter = _animations.find(indexOfDescriptor); if (iter == _animations.end()) iter = _animations.emplace(indexOfDescriptor, ParticleAnimationDescriptor{}).first; auto& desc = iter->second; desc.animationSpeed = time; desc.animationSpeedVariance = timeVariance; desc.animationIndices = std::move(indices); desc.reverseIndices = reverse; } void ParticleSystem::resetEmissionShapes() { _emissionShapeIndex = 0; _emissionShapes.clear(); } void ParticleSystem::addEmissionShape(EmissionShape shape) { setEmissionShape(_emissionShapeIndex, shape); } void ParticleSystem::setEmissionShape(unsigned short index, EmissionShape shape) { auto iter = _emissionShapes.find(index); if (iter == _emissionShapes.end()) { iter = _emissionShapes.emplace(index, EmissionShape{}).first; _emissionShapeIndex++; } iter->second = shape; } EmissionShape ParticleSystem::createMaskShape(std::string_view maskName, Vec2 pos, Vec2 overrideSize, Vec2 scale, float angle) { EmissionShape shape{}; shape.type = EmissionShapeType::ALPHA_MASK; shape.maskName = maskName; shape.x = pos.x; shape.y = pos.y; shape.innerWidth = overrideSize.x; shape.innerHeight = overrideSize.y; shape.outerWidth = scale.x; shape.outerHeight = scale.y; shape.coneOffset = angle; return shape; } EmissionShape ParticleSystem::createPointShape(Vec2 pos) { EmissionShape shape{}; shape.type = EmissionShapeType::POINT; shape.x = pos.x; shape.y = pos.y; return shape; } EmissionShape ParticleSystem::createRectShape(Vec2 pos, Size size) { EmissionShape shape{}; shape.type = EmissionShapeType::RECT; shape.x = pos.x; shape.y = pos.y; shape.innerWidth = size.x; shape.innerHeight = size.y; return shape; } EmissionShape ParticleSystem::createRectTorusShape(Vec2 pos, Size innerSize, Size outerSize) { EmissionShape shape{}; shape.type = EmissionShapeType::RECTTORUS; shape.x = pos.x; shape.y = pos.y; shape.innerWidth = innerSize.x; shape.innerHeight = innerSize.y; shape.outerWidth = outerSize.x; shape.outerHeight = outerSize.y; return shape; } EmissionShape ParticleSystem::createCircleShape(Vec2 pos, float radius, float edgeElasticity) { EmissionShape shape{}; shape.type = EmissionShapeType::CIRCLE; shape.x = pos.x; shape.y = pos.y; shape.innerRadius = radius; shape.coneOffset = 0; shape.coneAngle = 360; shape.edgeElasticity = edgeElasticity; return shape; } EmissionShape ParticleSystem::createConeShape(Vec2 pos, float radius, float offset, float angle, float edgeBias) { EmissionShape shape{}; shape.type = EmissionShapeType::CIRCLE; shape.x = pos.x; shape.y = pos.y; shape.innerRadius = radius; shape.coneOffset = offset; shape.coneAngle = angle; shape.edgeElasticity = edgeBias; return shape; } EmissionShape ParticleSystem::createTorusShape(Vec2 pos, float innerRadius, float outerRadius, float edgeBias) { EmissionShape shape{}; shape.type = EmissionShapeType::TORUS; shape.x = pos.x; shape.y = pos.y; shape.innerRadius = innerRadius; shape.outerRadius = outerRadius; shape.coneOffset = 0; shape.coneAngle = 360; shape.edgeElasticity = edgeBias; return shape; } EmissionShape ParticleSystem::createConeTorusShape(Vec2 pos, float innerRadius, float outerRadius, float offset, float angle, float edgeBias) { EmissionShape shape{}; shape.type = EmissionShapeType::TORUS; shape.x = pos.x; shape.y = pos.y; shape.innerRadius = innerRadius; shape.outerRadius = outerRadius; shape.coneOffset = offset; shape.coneAngle = angle; shape.edgeElasticity = edgeBias; return shape; } void ParticleSystem::setLifeAnimation(bool enabled) { if (enabled && !allocAnimationMem()) return; if (!enabled) deallocAnimationMem(); _isLifeAnimated = enabled; _isEmitterAnimated = false; _isLoopAnimated = false; } void ParticleSystem::setEmitterAnimation(bool enabled) { if (enabled && !allocAnimationMem()) return; if (!enabled) deallocAnimationMem(); _isEmitterAnimated = enabled; _isLifeAnimated = false; _isLoopAnimated = false; } void ParticleSystem::setLoopAnimation(bool enabled) { if (enabled && !allocAnimationMem()) return; if (!enabled) deallocAnimationMem(); _isLoopAnimated = enabled; _isEmitterAnimated = false; _isLifeAnimated = false; } void ParticleSystem::resetAnimationIndices() { _animIndexCount = 0; _animationIndices.clear(); } void ParticleSystem::resetAnimationDescriptors() { _animations.clear(); _randomAnimations.clear(); } void ParticleSystem::setMultiAnimationRandom() { _randomAnimations.clear(); for (auto& a : _animations) _randomAnimations.push_back(a.first); } void ParticleSystem::setAnimationIndicesAtlas() { // VERTICAL if (_texture->getPixelsHigh() > _texture->getPixelsWide()) { setAnimationIndicesAtlas(_texture->getPixelsWide(), ParticleSystem::TexAnimDir::VERTICAL); return; } // HORIZONTAL if (_texture->getPixelsWide() > _texture->getPixelsHigh()) { setAnimationIndicesAtlas(_texture->getPixelsHigh(), ParticleSystem::TexAnimDir::HORIZONTAL); return; } CCASSERT(false, "Couldn't figure out the atlas size and direction."); } void ParticleSystem::setAnimationIndicesAtlas(unsigned int unifiedCellSize, TexAnimDir direction) { CCASSERT(unifiedCellSize > 0, "A cell cannot have a size of zero."); resetAnimationIndices(); auto texWidth = _texture->getPixelsWide(); auto texHeight = _texture->getPixelsHigh(); switch (direction) { case TexAnimDir::VERTICAL: { for (short i = 0; i < short(texHeight / unifiedCellSize); i++) { Rect frame{}; frame.origin.x = 0; frame.origin.y = unifiedCellSize * i; frame.size.x = texWidth; frame.size.y = unifiedCellSize; addAnimationIndex(_animIndexCount, frame); } break; }; case TexAnimDir::HORIZONTAL: { for (short i = 0; i < short(texWidth / unifiedCellSize); i++) { Rect frame{}; frame.origin.x = unifiedCellSize * i; frame.origin.y = 0; frame.size.x = unifiedCellSize; frame.size.y = texHeight; addAnimationIndex(_animIndexCount, frame); } break; }; } } bool ParticleSystem::addAnimationIndex(std::string_view frameName) { return addAnimationIndex(_animIndexCount, frameName); } bool ParticleSystem::addAnimationIndex(unsigned short index, std::string_view frameName) { auto frame = SpriteFrameCache::getInstance()->getSpriteFrameByName(frameName); if (frame) return addAnimationIndex(index, frame); return false; } bool ParticleSystem::addAnimationIndex(cocos2d::SpriteFrame* frame) { return addAnimationIndex(_animIndexCount, frame); } bool ParticleSystem::addAnimationIndex(unsigned short index, cocos2d::SpriteFrame* frame) { if (frame) return addAnimationIndex(index, frame->getRect(), frame->isRotated()); return false; } bool ParticleSystem::addAnimationIndex(unsigned short index, cocos2d::Rect rect, bool rotated) { auto iter = _animationIndices.find(index); if (iter == _animationIndices.end()) { iter = _animationIndices.emplace(index, ParticleFrameDescriptor{}).first; _animIndexCount++; } auto& desc = iter->second; desc.rect = rect; desc.isRotated = rotated; return true; } void ParticleSystem::simulate(float seconds, float frameRate) { auto l_updatePaused = _updatePaused; _updatePaused = false; seconds = seconds == SIMULATION_USE_PARTICLE_LIFETIME ? getLife() + getLifeVar() : seconds; frameRate = frameRate == SIMULATION_USE_GAME_ANIMATION_INTERVAL ? 1.0F / Director::getInstance()->getAnimationInterval() : frameRate; auto delta = 1.0F / frameRate; if (seconds > delta) { while (seconds > 0.0F) { this->update(delta); seconds -= delta; } this->update(seconds); } else this->update(seconds); _updatePaused = l_updatePaused; } void ParticleSystem::resimulate(float seconds, float frameRate) { this->resetSystem(); this->simulate(seconds, frameRate); } void ParticleSystem::onEnter() { Node::onEnter(); // update after action in run! this->scheduleUpdateWithPriority(1); __allInstances.pushBack(this); } void ParticleSystem::onExit() { this->unscheduleUpdate(); Node::onExit(); auto iter = std::find(std::begin(__allInstances), std::end(__allInstances), this); if (iter != std::end(__allInstances)) { __allInstances.erase(iter); } } void ParticleSystem::stopSystem() { _isActive = false; _elapsed = _duration; _emitCounter = 0; } void ParticleSystem::resetSystem() { _isActive = true; _elapsed = 0; std::fill_n(_particleData.timeToLive, _particleCount, 0.0F); } bool ParticleSystem::isFull() { return (_particleCount == _totalParticles); } // ParticleSystem - MainLoop void ParticleSystem::update(float dt) { // don't process particles nor update gl buffer when this node is invisible. if (!_visible || _updatePaused) return; CC_PROFILER_START_CATEGORY(kProfilerCategoryParticles, "CCParticleSystem - update"); if (_componentContainer && !_componentContainer->isEmpty()) { _componentContainer->visit(dt); } if (_fixedFPS != 0) { _fixedFPSDelta += dt; if (_fixedFPSDelta < 1.0F / _fixedFPS) { CC_PROFILER_STOP_CATEGORY(kProfilerCategoryParticles, "CCParticleSystem - update"); return; } dt = _fixedFPSDelta; _fixedFPSDelta = 0.0F; } float pureDt = dt; dt *= _timeScale; if (_isActive && _emissionRate) { float rate = 1.0f / _emissionRate; int totalParticles = static_cast(_totalParticles * __totalParticleCountFactor); // issue #1201, prevent bursts of particles, due to too high emitCounter if (_particleCount < totalParticles) { _emitCounter += dt; _emitCounter = MAX(0.0F, _emitCounter); } int emitCount = MIN(totalParticles - _particleCount, _emitCounter / rate); addParticles(emitCount); _emitCounter -= rate * emitCount; _elapsed += dt; if (_elapsed < 0.f) _elapsed = 0.f; if (_duration != DURATION_INFINITY && _duration < _elapsed) { this->stopSystem(); } } // The reason for using for-loops separately for every property is because // When the processor needs to read from or write to a location in memory, // it first checks whether a copy of that data is in the cpu's cache. // And wether if every property's memory of the particle system is continuous, // for the purpose of improving cache hit rate, we should process only one property in one for-loop. // It was proved to be effective especially for low-end devices. { for (int i = 0; i < _particleCount; ++i) { _particleData.timeToLive[i] -= dt; } if (_isOpacityFadeInAllocated) { for (int i = 0; i < _particleCount; ++i) { _particleData.opacityFadeInDelta[i] += dt; _particleData.opacityFadeInDelta[i] = MIN(_particleData.opacityFadeInDelta[i], _particleData.opacityFadeInLength[i]); } } if (_isScaleInAllocated) { for (int i = 0; i < _particleCount; ++i) { _particleData.scaleInDelta[i] += dt; _particleData.scaleInDelta[i] = MIN(_particleData.scaleInDelta[i], _particleData.scaleInLength[i]); } } if (_isLifeAnimated || _isEmitterAnimated || _isLoopAnimated) { if (_isEmitterAnimated && !_animations.empty()) { for (int i = 0; i < _particleCount; ++i) { _particleData.animTimeDelta[i] += (_animationTimescaleInd ? pureDt : dt); if (_particleData.animTimeDelta[i] > _particleData.animTimeLength[i]) { auto& anim = _animations.at(_particleData.animIndex[i]); float percent = RANDOM_KISS_ABS(); percent = anim.reverseIndices ? 1.0F - percent : percent; _particleData.animCellIndex[i] = anim.animationIndices[MIN( percent * anim.animationIndices.size(), anim.animationIndices.size() - 1)]; _particleData.animTimeDelta[i] = 0; } } } if (_isLifeAnimated && _animations.empty()) { for (int i = 0; i < _particleCount; ++i) { float percent = (_particleData.totalTimeToLive[i] - _particleData.timeToLive[i]) / _particleData.totalTimeToLive[i]; percent = _isAnimationReversed ? 1.0F - percent : percent; _particleData.animCellIndex[i] = (unsigned short)MIN(percent * _animIndexCount, _animIndexCount - 1); } } if (_isLifeAnimated && !_animations.empty()) { for (int i = 0; i < _particleCount; ++i) { auto& anim = _animations.at(_particleData.animIndex[i]); float percent = (_particleData.totalTimeToLive[i] - _particleData.timeToLive[i]) / _particleData.totalTimeToLive[i]; percent = (!!_isAnimationReversed != !!anim.reverseIndices) ? 1.0F - percent : percent; percent = MAX(0.0F, percent); _particleData.animCellIndex[i] = anim.animationIndices[MIN(percent * anim.animationIndices.size(), anim.animationIndices.size() - 1)]; } } if (_isLoopAnimated && !_animations.empty()) { for (int i = 0; i < _particleCount; ++i) { auto& anim = _animations.at(_particleData.animIndex[i]); _particleData.animTimeDelta[i] += (_animationTimescaleInd ? pureDt : dt); if (_particleData.animTimeDelta[i] >= _particleData.animTimeLength[i]) _particleData.animTimeDelta[i] = 0; float percent = _particleData.animTimeDelta[i] / _particleData.animTimeLength[i]; percent = anim.reverseIndices ? 1.0F - percent : percent; percent = MAX(0.0F, percent); _particleData.animCellIndex[i] = anim.animationIndices[MIN(percent * anim.animationIndices.size(), anim.animationIndices.size() - 1)]; } } if (_isLoopAnimated && _animations.empty()) std::fill_n(_particleData.animTimeDelta, _particleCount, 0); } for (int i = 0; i < _particleCount; ++i) { if (_particleData.timeToLive[i] <= 0.0f) { int j = _particleCount - 1; while (j > 0 && _particleData.timeToLive[j] <= 0) { _particleCount--; j--; } _particleData.copyParticle(i, _particleCount - 1); if (_batchNode) { // disable the switched particle int currentIndex = _particleData.atlasIndex[i]; _batchNode->disableParticle(_atlasIndex + currentIndex); // switch indexes _particleData.atlasIndex[_particleCount - 1] = currentIndex; } --_particleCount; if (_particleCount == 0 && _isAutoRemoveOnFinish) { this->unscheduleUpdate(); _parent->removeChild(this, true); return; } } } if (_emitterMode == Mode::GRAVITY) { for (int i = 0; i < _particleCount; ++i) { particle_point tmp, radial = {0.0f, 0.0f}, tangential; // radial acceleration if (_particleData.posx[i] || _particleData.posy[i]) { normalize_point(_particleData.posx[i], _particleData.posy[i], &radial); } tangential = radial; radial.x *= _particleData.modeA.radialAccel[i]; radial.y *= _particleData.modeA.radialAccel[i]; // tangential acceleration std::swap(tangential.x, tangential.y); tangential.x *= -_particleData.modeA.tangentialAccel[i]; tangential.y *= _particleData.modeA.tangentialAccel[i]; // (gravity + radial + tangential) * dt tmp.x = radial.x + tangential.x + modeA.gravity.x; tmp.y = radial.y + tangential.y + modeA.gravity.y; tmp.x *= dt; tmp.y *= dt; _particleData.modeA.dirX[i] += tmp.x; _particleData.modeA.dirY[i] += tmp.y; // this is cocos2d-x v3.0 // if (_configName.length()>0 && _yCoordFlipped != -1) // this is cocos2d-x v3.0 tmp.x = _particleData.modeA.dirX[i] * dt * _yCoordFlipped; tmp.y = _particleData.modeA.dirY[i] * dt * _yCoordFlipped; _particleData.posx[i] += tmp.x; _particleData.posy[i] += tmp.y; } } else { for (int i = 0; i < _particleCount; ++i) { _particleData.modeB.angle[i] += _particleData.modeB.degreesPerSecond[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.modeB.radius[i] += _particleData.modeB.deltaRadius[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.posx[i] = -cosf(_particleData.modeB.angle[i]) * _particleData.modeB.radius[i]; } for (int i = 0; i < _particleCount; ++i) { _particleData.posy[i] = -sinf(_particleData.modeB.angle[i]) * _particleData.modeB.radius[i] * _yCoordFlipped; } } // color r,g,b,a for (int i = 0; i < _particleCount; ++i) { _particleData.colorR[i] += _particleData.deltaColorR[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.colorG[i] += _particleData.deltaColorG[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.colorB[i] += _particleData.deltaColorB[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.colorA[i] += _particleData.deltaColorA[i] * dt; } // size for (int i = 0; i < _particleCount; ++i) { _particleData.size[i] += (_particleData.deltaSize[i] * dt); _particleData.size[i] = MAX(0, _particleData.size[i]); } // angle for (int i = 0; i < _particleCount; ++i) { _particleData.rotation[i] += _particleData.deltaRotation[i] * dt; } updateParticleQuads(); _transformSystemDirty = false; } // update and send gl buffer only when this node is visible. if (_visible && !_batchNode) { postStep(); } CC_PROFILER_STOP_CATEGORY(kProfilerCategoryParticles, "CCParticleSystem - update"); } void ParticleSystem::updateWithNoTime() { this->update(0.0f); } void ParticleSystem::updateParticleQuads() { // should be overridden } void ParticleSystem::postStep() { // should be overridden } // ParticleSystem - Texture protocol void ParticleSystem::setTexture(Texture2D* var) { if (_texture != var) { CC_SAFE_RETAIN(var); CC_SAFE_RELEASE(_texture); _texture = var; updateBlendFunc(); } } void ParticleSystem::updateBlendFunc() { CCASSERT(!_batchNode, "Can't change blending functions when the particle is being batched"); if (_texture) { bool premultiplied = _texture->hasPremultipliedAlpha(); _opacityModifyRGB = false; if (_texture && (_blendFunc.src == CC_BLEND_SRC && _blendFunc.dst == CC_BLEND_DST)) { if (premultiplied) { _opacityModifyRGB = true; } else { _blendFunc = BlendFunc::ALPHA_NON_PREMULTIPLIED; } } } } Texture2D* ParticleSystem::getTexture() const { return _texture; } // ParticleSystem - Additive Blending void ParticleSystem::setBlendAdditive(bool additive) { if (additive) { _blendFunc = BlendFunc::ADDITIVE; } else { if (_texture && !_texture->hasPremultipliedAlpha()) _blendFunc = BlendFunc::ALPHA_NON_PREMULTIPLIED; else _blendFunc = BlendFunc::ALPHA_PREMULTIPLIED; } } bool ParticleSystem::isBlendAdditive() const { return (_blendFunc.src == backend::BlendFactor::SRC_ALPHA && _blendFunc.dst == backend::BlendFactor::ONE); } // ParticleSystem - Properties of Gravity Mode void ParticleSystem::setTangentialAccel(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.tangentialAccel = t; } float ParticleSystem::getTangentialAccel() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.tangentialAccel; } void ParticleSystem::setTangentialAccelVar(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.tangentialAccelVar = t; } float ParticleSystem::getTangentialAccelVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.tangentialAccelVar; } void ParticleSystem::setRadialAccel(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.radialAccel = t; } float ParticleSystem::getRadialAccel() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.radialAccel; } void ParticleSystem::setRadialAccelVar(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.radialAccelVar = t; } float ParticleSystem::getRadialAccelVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.radialAccelVar; } void ParticleSystem::setRotationIsDir(bool t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.rotationIsDir = t; } bool ParticleSystem::getRotationIsDir() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.rotationIsDir; } void ParticleSystem::setGravity(const Vec2& g) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.gravity = g; } const Vec2& ParticleSystem::getGravity() { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.gravity; } void ParticleSystem::setSpeed(float speed) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.speed = speed; } float ParticleSystem::getSpeed() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.speed; } void ParticleSystem::setSpeedVar(float speedVar) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.speedVar = speedVar; } float ParticleSystem::getSpeedVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.speedVar; } // ParticleSystem - Properties of Radius Mode void ParticleSystem::setStartRadius(float startRadius) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.startRadius = startRadius; } float ParticleSystem::getStartRadius() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.startRadius; } void ParticleSystem::setStartRadiusVar(float startRadiusVar) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.startRadiusVar = startRadiusVar; } float ParticleSystem::getStartRadiusVar() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.startRadiusVar; } void ParticleSystem::setEndRadius(float endRadius) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.endRadius = endRadius; } float ParticleSystem::getEndRadius() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.endRadius; } void ParticleSystem::setEndRadiusVar(float endRadiusVar) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.endRadiusVar = endRadiusVar; } float ParticleSystem::getEndRadiusVar() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.endRadiusVar; } void ParticleSystem::setRotatePerSecond(float degrees) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.rotatePerSecond = degrees; } float ParticleSystem::getRotatePerSecond() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.rotatePerSecond; } void ParticleSystem::setRotatePerSecondVar(float degrees) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.rotatePerSecondVar = degrees; } float ParticleSystem::getRotatePerSecondVar() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.rotatePerSecondVar; } bool ParticleSystem::isActive() const { return _isActive; } void ParticleSystem::useHSV(bool hsv) { if (hsv && !allocHSVMem()) return; if (!hsv) deallocHSVMem(); }; void ParticleSystem::setSpawnFadeIn(float time) { if (time != 0.0F && !allocOpacityFadeInMem()) return; _spawnFadeIn = time; } void ParticleSystem::setSpawnFadeInVar(float time) { if (time != 0.0F && !allocOpacityFadeInMem()) return; _spawnFadeInVar = time; } void ParticleSystem::setSpawnScaleIn(float time) { if (time != 0.0F && !allocScaleInMem()) return; _spawnScaleIn = time; } void ParticleSystem::setSpawnScaleInVar(float time) { if (time != 0.0F && !allocScaleInMem()) return; _spawnScaleInVar = time; } int ParticleSystem::getTotalParticles() const { return _totalParticles; } void ParticleSystem::setTotalParticles(int var) { CCASSERT(var <= _allocatedParticles, "Particle: resizing particle array only supported for quads"); _totalParticles = var; } const BlendFunc& ParticleSystem::getBlendFunc() const { return _blendFunc; } void ParticleSystem::setBlendFunc(const BlendFunc& blendFunc) { if (_blendFunc.src != blendFunc.src || _blendFunc.dst != blendFunc.dst) { _blendFunc = blendFunc; this->updateBlendFunc(); } } bool ParticleSystem::isAutoRemoveOnFinish() const { return _isAutoRemoveOnFinish; } void ParticleSystem::setAutoRemoveOnFinish(bool var) { _isAutoRemoveOnFinish = var; } // ParticleSystem - methods for batchNode rendering ParticleBatchNode* ParticleSystem::getBatchNode() const { return _batchNode; } void ParticleSystem::setBatchNode(ParticleBatchNode* batchNode) { if (_batchNode != batchNode) { _batchNode = batchNode; // weak reference if (batchNode) { // each particle needs a unique index for (int i = 0; i < _totalParticles; i++) { _particleData.atlasIndex[i] = i; } } } } // don't use a transform matrix, this is faster void ParticleSystem::setScale(float s) { _transformSystemDirty = true; Node::setScale(s); } void ParticleSystem::setRotation(float newRotation) { _transformSystemDirty = true; Node::setRotation(newRotation); } void ParticleSystem::setScaleX(float newScaleX) { _transformSystemDirty = true; Node::setScaleX(newScaleX); } void ParticleSystem::setScaleY(float newScaleY) { _transformSystemDirty = true; Node::setScaleY(newScaleY); } void ParticleSystem::start() { resetSystem(); } void ParticleSystem::stop() { stopSystem(); } bool ParticleSystem::isPaused() const { return _paused; } void ParticleSystem::pauseEmissions() { _paused = true; } void ParticleSystem::resumeEmissions() { _paused = false; } bool ParticleSystem::isUpdatePaused() const { return _updatePaused; } void ParticleSystem::pauseUpdate() { _updatePaused = true; } void ParticleSystem::resumeUpdate() { _updatePaused = false; } float ParticleSystem::getFixedFPS() { return _fixedFPS; } void ParticleSystem::setFixedFPS(float frameRate) { _fixedFPS = frameRate; } float ParticleSystem::getTimeScale() { return _timeScale; } void ParticleSystem::setTimeScale(float scale) { _timeScale = scale; } static ParticleEmissionMaskCache* emissionMaskCache; ParticleEmissionMaskCache* ParticleEmissionMaskCache::getInstance() { if (emissionMaskCache == nullptr) { emissionMaskCache = new ParticleEmissionMaskCache(); return emissionMaskCache; } return emissionMaskCache; } void ParticleEmissionMaskCache::bakeEmissionMask(std::string_view maskName, std::string_view texturePath, float alphaThreshold, bool inverted) { auto img = new Image(); img->Image::initWithImageFile(texturePath); img->autorelease(); CCASSERT(img, "image texture was nullptr."); bakeEmissionMask(maskName, img, alphaThreshold, inverted); } void ParticleEmissionMaskCache::bakeEmissionMask(std::string_view maskName, Image* imageTexture, float alphaThreshold, bool inverted) { auto img = imageTexture; CCASSERT(img, "image texture was nullptr."); CCASSERT(img->hasAlpha(), "image data should contain an alpha channel."); vector points; auto data = img->getData(); auto w = img->getWidth(); auto h = img->getHeight(); for (int y = 0; y < h; y++) for (int x = 0; x < w; x++) { float a = data[(y * w + x) * 4 + 3] / 255.0F; if (a >= alphaThreshold && !inverted) points.push_back({float(x), float(h - y)}); if (a < alphaThreshold && inverted) points.push_back({float(x), float(h - y)}); } auto iter = this->masks.find(maskName); if (iter == this->masks.end()) iter = this->masks.emplace(maskName, ParticleEmissionMaskDescriptor{}).first; ParticleEmissionMaskDescriptor desc; desc.size = {float(w), float(h)}; desc.points = std::move(points); iter->second = desc; CCLOG("Particle emission mask '%s' baked (%dx%d), %d samples generated taking %.2fmb of memory.", std::string(maskName).c_str(), w, h, desc.points.size(), desc.points.size() * 8 / 1e+6); } const ParticleEmissionMaskDescriptor& ParticleEmissionMaskCache::getEmissionMask(std::string_view maskName) { auto iter = this->masks.find(maskName); if (iter == this->masks.end()) { ParticleEmissionMaskDescriptor desc{}; desc.size = {float(1), float(1)}; desc.points = {{0, 0}}; return desc; } return iter->second; } void ParticleEmissionMaskCache::releaseMaskFromMemory(std::string_view maskName) { this->masks.erase(maskName); } void ParticleEmissionMaskCache::releaseAllMasksFromMemory() { this->masks.clear(); } NS_CC_END