/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jsvector_h_ #define jsvector_h_ #include "mozilla/Attributes.h" #include "mozilla/TypeTraits.h" #include "TemplateLib.h" #include "Utility.h" /* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */ #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4345) #endif namespace js { class TempAllocPolicy; template <class T, size_t MinInlineCapacity = 0, class AllocPolicy = TempAllocPolicy> class Vector; /* * Check that the given capacity wastes the minimal amount of space if * allocated on the heap. This means that cap*sizeof(T) is as close to a * power-of-two as possible. growStorageBy() is responsible for ensuring * this. */ template <typename T> static bool CapacityHasExcessSpace(size_t cap) { size_t size = cap * sizeof(T); return RoundUpPow2(size) - size >= sizeof(T); } /* * This template class provides a default implementation for vector operations * when the element type is not known to be a POD, as judged by IsPod. */ template <class T, size_t N, class AP, bool IsPod> struct VectorImpl { /* Destroys constructed objects in the range [begin, end). */ static inline void destroy(T *begin, T *end) { for (T *p = begin; p != end; ++p) p->~T(); } /* Constructs objects in the uninitialized range [begin, end). */ static inline void initialize(T *begin, T *end) { for (T *p = begin; p != end; ++p) new(p) T(); } /* * Copy-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template <class U> static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { for (const U *p = srcbeg; p != srcend; ++p, ++dst) new(dst) T(*p); } /* * Move-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template <class U> static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) { for (const U *p = srcbeg; p != srcend; ++p, ++dst) new(dst) T(Move(*p)); } /* * Copy-constructs objects in the uninitialized range [dst, dst+n) from the * same object u. */ template <class U> static inline void copyConstructN(T *dst, size_t n, const U &u) { for (T *end = dst + n; dst != end; ++dst) new(dst) T(u); } /* * Grows the given buffer to have capacity newCap, preserving the objects * constructed in the range [begin, end) and updating v. Assumes that (1) * newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will * not overflow. */ static inline bool growTo(Vector<T,N,AP> &v, size_t newCap) { JS_ASSERT(!v.usingInlineStorage()); JS_ASSERT(!CapacityHasExcessSpace<T>(newCap)); T *newbuf = reinterpret_cast<T *>(v.malloc_(newCap * sizeof(T))); if (!newbuf) return false; for (T *dst = newbuf, *src = v.beginNoCheck(); src != v.endNoCheck(); ++dst, ++src) new(dst) T(Move(*src)); VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck()); v.free_(v.mBegin); v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newCap; return true; } }; /* * This partial template specialization provides a default implementation for * vector operations when the element type is known to be a POD, as judged by * IsPod. */ template <class T, size_t N, class AP> struct VectorImpl<T, N, AP, true> { static inline void destroy(T *, T *) {} static inline void initialize(T *begin, T *end) { /* * You would think that memset would be a big win (or even break even) * when we know T is a POD. But currently it's not. This is probably * because |append| tends to be given small ranges and memset requires * a function call that doesn't get inlined. * * memset(begin, 0, sizeof(T) * (end-begin)); */ for (T *p = begin; p != end; ++p) new(p) T(); } template <class U> static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { /* * See above memset comment. Also, notice that copyConstruct is * currently templated (T != U), so memcpy won't work without * requiring T == U. * * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg)); */ for (const U *p = srcbeg; p != srcend; ++p, ++dst) *dst = *p; } template <class U> static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) { copyConstruct(dst, srcbeg, srcend); } static inline void copyConstructN(T *dst, size_t n, const T &t) { for (T *p = dst, *end = dst + n; p != end; ++p) *p = t; } static inline bool growTo(Vector<T,N,AP> &v, size_t newCap) { JS_ASSERT(!v.usingInlineStorage()); JS_ASSERT(!CapacityHasExcessSpace<T>(newCap)); size_t oldSize = sizeof(T) * v.mCapacity; size_t newSize = sizeof(T) * newCap; T *newbuf = reinterpret_cast<T *>(v.realloc_(v.mBegin, oldSize, newSize)); if (!newbuf) return false; v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newCap; return true; } }; /* * JS-friendly, STL-like container providing a short-lived, dynamic buffer. * Vector calls the constructors/destructors of all elements stored in * its internal buffer, so non-PODs may be safely used. Additionally, * Vector will store the first N elements in-place before resorting to * dynamic allocation. * * T requirements: * - default and copy constructible, assignable, destructible * - operations do not throw * N requirements: * - any value, however, N is clamped to min/max values * AllocPolicy: * - see "Allocation policies" in jsalloc.h (default js::TempAllocPolicy) * * N.B: Vector is not reentrant: T member functions called during Vector member * functions must not call back into the same object. */ template <class T, size_t N, class AllocPolicy> class Vector : private AllocPolicy { // typedef typename tl::StaticAssert<!tl::IsPostBarrieredType<T>::result>::result _; /* utilities */ static const bool sElemIsPod = mozilla::IsPod<T>::value; typedef VectorImpl<T, N, AllocPolicy, sElemIsPod> Impl; friend struct VectorImpl<T, N, AllocPolicy, sElemIsPod>; bool growStorageBy(size_t incr); bool convertToHeapStorage(size_t newCap); template <bool InitNewElems> inline bool growByImpl(size_t inc); /* magic constants */ static const int sMaxInlineBytes = 1024; /* compute constants */ /* * Consider element size to be 1 for buffer sizing if there are * 0 inline elements. This allows us to compile when the definition * of the element type is not visible here. * * Explicit specialization is only allowed at namespace scope, so * in order to keep everything here, we use a dummy template * parameter with partial specialization. */ template <int M, int Dummy> struct ElemSize { static const size_t result = sizeof(T); }; template <int Dummy> struct ElemSize<0, Dummy> { static const size_t result = 1; }; static const size_t sInlineCapacity = tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::result>::result; /* Calculate inline buffer size; avoid 0-sized array. */ static const size_t sInlineBytes = tl::Max<1, sInlineCapacity * ElemSize<N, 0>::result>::result; /* member data */ /* * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin, * mBegin + mLength) hold valid constructed T objects. The range [mBegin + * mLength, mBegin + mCapacity) holds uninitialized memory. The range * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory * previously allocated by a call to reserve(). */ T *mBegin; size_t mLength; /* Number of elements in the Vector. */ size_t mCapacity; /* Max number of elements storable in the Vector without resizing. */ #ifdef DEBUG size_t mReserved; /* Max elements of reserved or used space in this vector. */ #endif mozilla::AlignedStorage<sInlineBytes> storage; #ifdef DEBUG friend class ReentrancyGuard; bool entered; #endif Vector(const Vector &) MOZ_DELETE; Vector &operator=(const Vector &) MOZ_DELETE; /* private accessors */ bool usingInlineStorage() const { return mBegin == inlineStorage(); } T *inlineStorage() const { return (T *)storage.addr(); } T *beginNoCheck() const { return mBegin; } T *endNoCheck() { return mBegin + mLength; } const T *endNoCheck() const { return mBegin + mLength; } #ifdef DEBUG size_t reserved() const { JS_ASSERT(mReserved <= mCapacity); JS_ASSERT(mLength <= mReserved); return mReserved; } #endif /* Append operations guaranteed to succeed due to pre-reserved space. */ template <class U> void internalAppend(U u); void internalAppendN(const T &t, size_t n); template <class U> void internalAppend(const U *begin, size_t length); template <class U, size_t O, class BP> void internalAppend(const Vector<U,O,BP> &other); public: static const size_t sMaxInlineStorage = N; typedef T ElementType; Vector(AllocPolicy = AllocPolicy()); Vector(MoveRef<Vector>); /* Move constructor. */ Vector &operator=(MoveRef<Vector>); /* Move assignment. */ ~Vector(); /* accessors */ const AllocPolicy &allocPolicy() const { return *this; } AllocPolicy &allocPolicy() { return *this; } enum { InlineLength = N }; size_t length() const { return mLength; } bool empty() const { return mLength == 0; } size_t capacity() const { return mCapacity; } T *begin() { JS_ASSERT(!entered); return mBegin; } const T *begin() const { JS_ASSERT(!entered); return mBegin; } T *end() { JS_ASSERT(!entered); return mBegin + mLength; } const T *end() const { JS_ASSERT(!entered); return mBegin + mLength; } T &operator[](size_t i) { JS_ASSERT(!entered && i < mLength); return begin()[i]; } const T &operator[](size_t i) const { JS_ASSERT(!entered && i < mLength); return begin()[i]; } T &back() { JS_ASSERT(!entered && !empty()); return *(end() - 1); } const T &back() const { JS_ASSERT(!entered && !empty()); return *(end() - 1); } class Range { friend class Vector; T *cur_, *end_; Range(T *cur, T *end) : cur_(cur), end_(end) {} public: Range() {} bool empty() const { return cur_ == end_; } size_t remain() const { return end_ - cur_; } T &front() const { return *cur_; } void popFront() { JS_ASSERT(!empty()); ++cur_; } T popCopyFront() { JS_ASSERT(!empty()); return *cur_++; } }; Range all() { return Range(begin(), end()); } /* mutators */ /* Given that the Vector is empty and has no inline storage, grow to |capacity|. */ bool initCapacity(size_t request); /* If reserve(length() + N) succeeds, the N next appends are guaranteed to succeed. */ bool reserve(size_t request); /* * Destroy elements in the range [end() - incr, end()). Does not deallocate * or unreserve storage for those elements. */ void shrinkBy(size_t incr); /* Grow the vector by incr elements. */ bool growBy(size_t incr); /* Call shrinkBy or growBy based on whether newSize > length(). */ bool resize(size_t newLength); /* Leave new elements as uninitialized memory. */ bool growByUninitialized(size_t incr); bool resizeUninitialized(size_t newLength); /* Shorthand for shrinkBy(length()). */ void clear(); /* Clears and releases any heap-allocated storage. */ void clearAndFree(); /* If true, appending |needed| elements will not call realloc(). */ bool canAppendWithoutRealloc(size_t needed) const; /* * Potentially fallible append operations. * * The function templates that take an unspecified type U require a * const T & or a MoveRef<T>. The MoveRef<T> variants move their * operands into the vector, instead of copying them. If they fail, the * operand is left unmoved. */ template <class U> bool append(U t); bool appendN(const T &t, size_t n); template <class U> bool append(const U *begin, const U *end); template <class U> bool append(const U *begin, size_t length); template <class U, size_t O, class BP> bool append(const Vector<U,O,BP> &other); /* * Guaranteed-infallible append operations for use upon vectors whose * memory has been pre-reserved. */ template <class U> void infallibleAppend(const U &u) { internalAppend(u); } void infallibleAppendN(const T &t, size_t n) { internalAppendN(t, n); } template <class U> void infallibleAppend(const U *aBegin, const U *aEnd) { internalAppend(aBegin, mozilla::PointerRangeSize(aBegin, aEnd)); } template <class U> void infallibleAppend(const U *aBegin, size_t aLength) { internalAppend(aBegin, aLength); } template <class U, size_t O, class BP> void infallibleAppend(const Vector<U,O,BP> &other) { internalAppend(other); } void popBack(); T popCopy(); /* * Transfers ownership of the internal buffer used by Vector to the caller. * After this call, the Vector is empty. Since the returned buffer may need * to be allocated (if the elements are currently stored in-place), the * call can fail, returning NULL. * * N.B. Although a T*, only the range [0, length()) is constructed. */ T *extractRawBuffer(); /* * Transfer ownership of an array of objects into the Vector. * N.B. This call assumes that there are no uninitialized elements in the * passed array. */ void replaceRawBuffer(T *p, size_t length); /* * Places |val| at position |p|, shifting existing elements from |p| * onward one position higher. On success, |p| should not be reused * because it will be a dangling pointer if reallocation of the vector * storage occurred; the return value should be used instead. On failure, * NULL is returned. * * Example usage: * * if (!(p = vec.insert(p, val))) * <handle failure> * <keep working with p> */ T *insert(T *p, const T &val); /* * Removes the element |t|, which must fall in the bounds [begin, end), * shifting existing elements from |t + 1| onward one position lower. */ void erase(T *t); /* * Measure the size of the Vector's heap-allocated storage. */ size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const; /* * Like sizeOfExcludingThis, but also measures the size of the Vector * object (which must be heap-allocated) itself. */ size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const; void swap(Vector &other); }; /* This does the re-entrancy check plus several other sanity checks. */ #define REENTRANCY_GUARD_ET_AL \ ReentrancyGuard g(*this); \ JS_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \ JS_ASSERT(reserved() <= mCapacity); \ JS_ASSERT(mLength <= reserved()); \ JS_ASSERT(mLength <= mCapacity) /* Vector Implementation */ template <class T, size_t N, class AllocPolicy> JS_ALWAYS_INLINE Vector<T,N,AllocPolicy>::Vector(AllocPolicy ap) : AllocPolicy(ap), mBegin((T *)storage.addr()), mLength(0), mCapacity(sInlineCapacity) #ifdef DEBUG , mReserved(sInlineCapacity), entered(false) #endif {} /* Move constructor. */ template <class T, size_t N, class AllocPolicy> JS_ALWAYS_INLINE Vector<T, N, AllocPolicy>::Vector(MoveRef<Vector> rhs) : AllocPolicy(rhs) #ifdef DEBUG , entered(false) #endif { mLength = rhs->mLength; mCapacity = rhs->mCapacity; #ifdef DEBUG mReserved = rhs->mReserved; #endif if (rhs->usingInlineStorage()) { /* We can't move the buffer over in this case, so copy elements. */ mBegin = (T *)storage.addr(); Impl::moveConstruct(mBegin, rhs->beginNoCheck(), rhs->endNoCheck()); /* * Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are. * The elements in its in-line storage still need to be destroyed. */ } else { /* * Take src's buffer, and turn src into an empty vector using * in-line storage. */ mBegin = rhs->mBegin; rhs->mBegin = (T *) rhs->storage.addr(); rhs->mCapacity = sInlineCapacity; rhs->mLength = 0; #ifdef DEBUG rhs->mReserved = sInlineCapacity; #endif } } /* Move assignment. */ template <class T, size_t N, class AP> JS_ALWAYS_INLINE Vector<T, N, AP> & Vector<T, N, AP>::operator=(MoveRef<Vector> rhs) { this->~Vector(); new(this) Vector(rhs); return *this; } template <class T, size_t N, class AP> JS_ALWAYS_INLINE Vector<T,N,AP>::~Vector() { REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free_(beginNoCheck()); } /* * This function will create a new heap buffer with capacity newCap, * move all elements in the inline buffer to this new buffer, * and fail on OOM. */ template <class T, size_t N, class AP> inline bool Vector<T,N,AP>::convertToHeapStorage(size_t newCap) { JS_ASSERT(usingInlineStorage()); /* Allocate buffer. */ JS_ASSERT(!CapacityHasExcessSpace<T>(newCap)); T *newBuf = reinterpret_cast<T *>(this->malloc_(newCap * sizeof(T))); if (!newBuf) return false; /* Copy inline elements into heap buffer. */ Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* Switch in heap buffer. */ mBegin = newBuf; /* mLength is unchanged. */ mCapacity = newCap; return true; } template <class T, size_t N, class AP> JS_NEVER_INLINE bool Vector<T,N,AP>::growStorageBy(size_t incr) { JS_ASSERT(mLength + incr > mCapacity); JS_ASSERT_IF(!usingInlineStorage(), !CapacityHasExcessSpace<T>(mCapacity)); /* * When choosing a new capacity, its size should is as close to 2^N bytes * as possible. 2^N-sized requests are best because they are unlikely to * be rounded up by the allocator. Asking for a 2^N number of elements * isn't as good, because if sizeof(T) is not a power-of-two that would * result in a non-2^N request size. */ size_t newCap; if (incr == 1) { if (usingInlineStorage()) { /* This case occurs in ~70--80% of the calls to this function. */ size_t newSize = tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::result; newCap = newSize / sizeof(T); goto convert; } if (mLength == 0) { /* This case occurs in ~0--10% of the calls to this function. */ newCap = 1; goto grow; } /* This case occurs in ~15--20% of the calls to this function. */ /* * Will mLength*4*sizeof(T) overflow? This condition limits a Vector * to 1GB of memory on a 32-bit system, which is a reasonable limit. * It also ensures that the ((char *)end() - (char *)begin()) does not * overflow ptrdiff_t (see Bug 510319). */ if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::result) { this->reportAllocOverflow(); return false; } /* * If we reach here, the existing capacity will have a size that is * already as close to 2^N as sizeof(T) will allow. Just double the * capacity, and then there might be space for one more element. */ newCap = mLength * 2; if (CapacityHasExcessSpace<T>(newCap)) newCap += 1; } else { /* This case occurs in ~2% of the calls to this function. */ size_t newMinCap = mLength + incr; /* Did mLength+incr overflow? Will newCap*sizeof(T) overflow? */ if (newMinCap < mLength || newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) { this->reportAllocOverflow(); return false; } size_t newMinSize = newMinCap * sizeof(T); size_t newSize = RoundUpPow2(newMinSize); newCap = newSize / sizeof(T); } if (usingInlineStorage()) { convert: return convertToHeapStorage(newCap); } grow: return Impl::growTo(*this, newCap); } template <class T, size_t N, class AP> inline bool Vector<T,N,AP>::initCapacity(size_t request) { JS_ASSERT(empty()); JS_ASSERT(usingInlineStorage()); if (request == 0) return true; T *newbuf = reinterpret_cast<T *>(this->malloc_(request * sizeof(T))); if (!newbuf) return false; mBegin = newbuf; mCapacity = request; #ifdef DEBUG mReserved = request; #endif return true; } template <class T, size_t N, class AP> inline bool Vector<T,N,AP>::reserve(size_t request) { REENTRANCY_GUARD_ET_AL; if (request > mCapacity && !growStorageBy(request - mLength)) return false; #ifdef DEBUG if (request > mReserved) mReserved = request; JS_ASSERT(mLength <= mReserved); JS_ASSERT(mReserved <= mCapacity); #endif return true; } template <class T, size_t N, class AP> inline void Vector<T,N,AP>::shrinkBy(size_t incr) { REENTRANCY_GUARD_ET_AL; JS_ASSERT(incr <= mLength); Impl::destroy(endNoCheck() - incr, endNoCheck()); mLength -= incr; } template <class T, size_t N, class AP> template <bool InitNewElems> JS_ALWAYS_INLINE bool Vector<T,N,AP>::growByImpl(size_t incr) { REENTRANCY_GUARD_ET_AL; if (incr > mCapacity - mLength && !growStorageBy(incr)) return false; JS_ASSERT(mLength + incr <= mCapacity); T *newend = endNoCheck() + incr; if (InitNewElems) Impl::initialize(endNoCheck(), newend); mLength += incr; #ifdef DEBUG if (mLength > mReserved) mReserved = mLength; #endif return true; } template <class T, size_t N, class AP> JS_ALWAYS_INLINE bool Vector<T,N,AP>::growBy(size_t incr) { return growByImpl<true>(incr); } template <class T, size_t N, class AP> JS_ALWAYS_INLINE bool Vector<T,N,AP>::growByUninitialized(size_t incr) { return growByImpl<false>(incr); } template <class T, size_t N, class AP> STATIC_POSTCONDITION(!return || ubound(this->begin()) >= newLength) inline bool Vector<T,N,AP>::resize(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growBy(newLength - curLength); shrinkBy(curLength - newLength); return true; } template <class T, size_t N, class AP> JS_ALWAYS_INLINE bool Vector<T,N,AP>::resizeUninitialized(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growByUninitialized(newLength - curLength); shrinkBy(curLength - newLength); return true; } template <class T, size_t N, class AP> inline void Vector<T,N,AP>::clear() { REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); mLength = 0; } template <class T, size_t N, class AP> inline void Vector<T,N,AP>::clearAndFree() { clear(); if (usingInlineStorage()) return; this->free_(beginNoCheck()); mBegin = (T *)storage.addr(); mCapacity = sInlineCapacity; #ifdef DEBUG mReserved = sInlineCapacity; #endif } template <class T, size_t N, class AP> inline bool Vector<T,N,AP>::canAppendWithoutRealloc(size_t needed) const { return mLength + needed <= mCapacity; } template <class T, size_t N, class AP> template <class U> JS_ALWAYS_INLINE bool Vector<T,N,AP>::append(U t) { REENTRANCY_GUARD_ET_AL; if (mLength == mCapacity && !growStorageBy(1)) return false; #ifdef DEBUG if (mLength + 1 > mReserved) mReserved = mLength + 1; #endif internalAppend(t); return true; } template <class T, size_t N, class AP> template <class U> JS_ALWAYS_INLINE void Vector<T,N,AP>::internalAppend(U u) { JS_ASSERT(mLength + 1 <= mReserved); JS_ASSERT(mReserved <= mCapacity); new(endNoCheck()) T(u); ++mLength; } template <class T, size_t N, class AP> JS_ALWAYS_INLINE bool Vector<T,N,AP>::appendN(const T &t, size_t needed) { REENTRANCY_GUARD_ET_AL; if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; #ifdef DEBUG if (mLength + needed > mReserved) mReserved = mLength + needed; #endif internalAppendN(t, needed); return true; } template <class T, size_t N, class AP> JS_ALWAYS_INLINE void Vector<T,N,AP>::internalAppendN(const T &t, size_t needed) { JS_ASSERT(mLength + needed <= mReserved); JS_ASSERT(mReserved <= mCapacity); Impl::copyConstructN(endNoCheck(), needed, t); mLength += needed; } template <class T, size_t N, class AP> inline T * Vector<T,N,AP>::insert(T *p, const T &val) { JS_ASSERT(begin() <= p && p <= end()); size_t pos = p - begin(); JS_ASSERT(pos <= mLength); size_t oldLength = mLength; if (pos == oldLength) { if (!append(val)) return NULL; } else { T oldBack = back(); if (!append(oldBack)) /* Dup the last element. */ return NULL; for (size_t i = oldLength; i > pos; --i) (*this)[i] = (*this)[i - 1]; (*this)[pos] = val; } return begin() + pos; } template<typename T, size_t N, class AP> inline void Vector<T,N,AP>::erase(T *it) { JS_ASSERT(begin() <= it && it < end()); while (it + 1 != end()) { *it = *(it + 1); ++it; } popBack(); } template <class T, size_t N, class AP> template <class U> JS_ALWAYS_INLINE bool Vector<T,N,AP>::append(const U *insBegin, const U *insEnd) { REENTRANCY_GUARD_ET_AL; size_t needed = mozilla::PointerRangeSize(insBegin, insEnd); if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; #ifdef DEBUG if (mLength + needed > mReserved) mReserved = mLength + needed; #endif internalAppend(insBegin, needed); return true; } template <class T, size_t N, class AP> template <class U> JS_ALWAYS_INLINE void Vector<T,N,AP>::internalAppend(const U *insBegin, size_t insLength) { JS_ASSERT(mLength + insLength <= mReserved); JS_ASSERT(mReserved <= mCapacity); Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength); mLength += insLength; } template <class T, size_t N, class AP> template <class U, size_t O, class BP> inline bool Vector<T,N,AP>::append(const Vector<U,O,BP> &other) { return append(other.begin(), other.end()); } template <class T, size_t N, class AP> template <class U, size_t O, class BP> inline void Vector<T,N,AP>::internalAppend(const Vector<U,O,BP> &other) { internalAppend(other.begin(), other.length()); } template <class T, size_t N, class AP> template <class U> JS_ALWAYS_INLINE bool Vector<T,N,AP>::append(const U *insBegin, size_t insLength) { return this->append(insBegin, insBegin + insLength); } template <class T, size_t N, class AP> JS_ALWAYS_INLINE void Vector<T,N,AP>::popBack() { REENTRANCY_GUARD_ET_AL; JS_ASSERT(!empty()); --mLength; endNoCheck()->~T(); } template <class T, size_t N, class AP> JS_ALWAYS_INLINE T Vector<T,N,AP>::popCopy() { T ret = back(); popBack(); return ret; } template <class T, size_t N, class AP> inline T * Vector<T,N,AP>::extractRawBuffer() { T *ret; if (usingInlineStorage()) { ret = reinterpret_cast<T *>(this->malloc_(mLength * sizeof(T))); if (!ret) return NULL; Impl::copyConstruct(ret, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* mBegin, mCapacity are unchanged. */ mLength = 0; } else { ret = mBegin; mBegin = (T *)storage.addr(); mLength = 0; mCapacity = sInlineCapacity; #ifdef DEBUG mReserved = sInlineCapacity; #endif } return ret; } template <class T, size_t N, class AP> inline void Vector<T,N,AP>::replaceRawBuffer(T *p, size_t aLength) { REENTRANCY_GUARD_ET_AL; /* Destroy what we have. */ Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free_(beginNoCheck()); /* Take in the new buffer. */ if (aLength <= sInlineCapacity) { /* * We convert to inline storage if possible, even though p might * otherwise be acceptable. Maybe this behaviour should be * specifiable with an argument to this function. */ mBegin = (T *)storage.addr(); mLength = aLength; mCapacity = sInlineCapacity; Impl::moveConstruct(mBegin, p, p + aLength); Impl::destroy(p, p + aLength); this->free_(p); } else { mBegin = p; mLength = aLength; mCapacity = aLength; } #ifdef DEBUG mReserved = aLength; #endif } template <class T, size_t N, class AP> inline size_t Vector<T,N,AP>::sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const { return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck()); } template <class T, size_t N, class AP> inline size_t Vector<T,N,AP>::sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const { return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf); } template <class T, size_t N, class AP> inline void Vector<T,N,AP>::swap(Vector &other) { // TODO Implement N != 0 JS_STATIC_ASSERT(N == 0); // This only works when inline storage is always empty. if (!usingInlineStorage() && other.usingInlineStorage()) { other.mBegin = mBegin; mBegin = inlineStorage(); } else if (usingInlineStorage() && !other.usingInlineStorage()) { mBegin = other.mBegin; other.mBegin = other.inlineStorage(); } else if (!usingInlineStorage() && !other.usingInlineStorage()) { Swap(mBegin, other.mBegin); } else { // This case is a no-op, since we'd set both to use their inline storage. } Swap(mLength, other.mLength); Swap(mCapacity, other.mCapacity); #ifdef DEBUG Swap(mReserved, other.mReserved); #endif } } /* namespace js */ #ifdef _MSC_VER #pragma warning(pop) #endif #endif /* jsvector_h_ */