/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2007 Scott Lembcke Copyright (c) 2010 Lam Pham http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCPointExtension.h" #include "ccMacros.h" // FLT_EPSILON #include NS_CC_BEGIN #define kCCPointEpsilon FLT_EPSILON float ccpLength(const CCPoint& v) { return sqrtf(ccpLengthSQ(v)); } float ccpDistance(const CCPoint& v1, const CCPoint& v2) { return ccpLength(ccpSub(v1, v2)); } CCPoint ccpNormalize(const CCPoint& v) { return ccpMult(v, 1.0f/ccpLength(v)); } CCPoint ccpForAngle(const float a) { return ccp(cosf(a), sinf(a)); } float ccpToAngle(const CCPoint& v) { return atan2f(v.y, v.x); } CCPoint ccpLerp(const CCPoint& a, const CCPoint& b, float alpha) { return ccpAdd(ccpMult(a, 1.f - alpha), ccpMult(b, alpha)); } float clampf(float value, float min_inclusive, float max_inclusive) { if (min_inclusive > max_inclusive) { CC_SWAP(min_inclusive, max_inclusive, float); } return value < min_inclusive ? min_inclusive : value < max_inclusive? value : max_inclusive; } CCPoint ccpClamp(const CCPoint& p, const CCPoint& min_inclusive, const CCPoint& max_inclusive) { return ccp(clampf(p.x,min_inclusive.x,max_inclusive.x), clampf(p.y, min_inclusive.y, max_inclusive.y)); } CCPoint ccpFromSize(const CCSize& s) { return ccp(s.width, s.height); } CCPoint ccpCompOp(const CCPoint& p, float (*opFunc)(float)) { return ccp(opFunc(p.x), opFunc(p.y)); } bool ccpFuzzyEqual(const CCPoint& a, const CCPoint& b, float var) { if(a.x - var <= b.x && b.x <= a.x + var) if(a.y - var <= b.y && b.y <= a.y + var) return true; return false; } CCPoint ccpCompMult(const CCPoint& a, const CCPoint& b) { return ccp(a.x * b.x, a.y * b.y); } float ccpAngleSigned(const CCPoint& a, const CCPoint& b) { CCPoint a2 = ccpNormalize(a); CCPoint b2 = ccpNormalize(b); float angle = atan2f(a2.x * b2.y - a2.y * b2.x, ccpDot(a2, b2)); if( fabs(angle) < kCCPointEpsilon ) return 0.f; return angle; } CCPoint ccpRotateByAngle(const CCPoint& v, const CCPoint& pivot, float angle) { CCPoint r = ccpSub(v, pivot); float cosa = cosf(angle), sina = sinf(angle); float t = r.x; r.x = t*cosa - r.y*sina + pivot.x; r.y = t*sina + r.y*cosa + pivot.y; return r; } bool ccpSegmentIntersect(const CCPoint& A, const CCPoint& B, const CCPoint& C, const CCPoint& D) { float S, T; if( ccpLineIntersect(A, B, C, D, &S, &T ) && (S >= 0.0f && S <= 1.0f && T >= 0.0f && T <= 1.0f) ) return true; return false; } CCPoint ccpIntersectPoint(const CCPoint& A, const CCPoint& B, const CCPoint& C, const CCPoint& D) { float S, T; if( ccpLineIntersect(A, B, C, D, &S, &T) ) { // Point of intersection CCPoint P; P.x = A.x + S * (B.x - A.x); P.y = A.y + S * (B.y - A.y); return P; } return CCPointZero; } bool ccpLineIntersect(const CCPoint& A, const CCPoint& B, const CCPoint& C, const CCPoint& D, float *S, float *T) { // FAIL: Line undefined if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) ) { return false; } const float BAx = B.x - A.x; const float BAy = B.y - A.y; const float DCx = D.x - C.x; const float DCy = D.y - C.y; const float ACx = A.x - C.x; const float ACy = A.y - C.y; const float denom = DCy*BAx - DCx*BAy; *S = DCx*ACy - DCy*ACx; *T = BAx*ACy - BAy*ACx; if (denom == 0) { if (*S == 0 || *T == 0) { // Lines incident return true; } // Lines parallel and not incident return false; } *S = *S / denom; *T = *T / denom; // Point of intersection // CGPoint P; // P.x = A.x + *S * (B.x - A.x); // P.y = A.y + *S * (B.y - A.y); return true; } float ccpAngle(const CCPoint& a, const CCPoint& b) { float angle = acosf(ccpDot(ccpNormalize(a), ccpNormalize(b))); if( fabs(angle) < kCCPointEpsilon ) return 0.f; return angle; } NS_CC_END