/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include <algorithm> #include <array> #include <chrono> #include <cmath> #include <cstdio> #include <cstring> #include <functional> #include <iterator> #include <memory> #include <new> #include <numeric> #include <string> #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "al/auxeffectslot.h" #include "albit.h" #include "alconfig.h" #include "alc/context.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "alstring.h" #include "alu.h" #include "core/ambdec.h" #include "core/ambidefs.h" #include "core/bformatdec.h" #include "core/bs2b.h" #include "core/devformat.h" #include "core/front_stablizer.h" #include "core/hrtf.h" #include "core/logging.h" #include "core/uhjfilter.h" #include "device.h" #include "opthelpers.h" namespace { using namespace std::placeholders; using std::chrono::seconds; using std::chrono::nanoseconds; inline const char *GetLabelFromChannel(Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case TopFrontLeft: return "top-front-left"; case TopFrontCenter: return "top-front-center"; case TopFrontRight: return "top-front-right"; case TopCenter: return "top-center"; case TopBackLeft: return "top-back-left"; case TopBackCenter: return "top-back-center"; case TopBackRight: return "top-back-right"; case Aux0: return "Aux0"; case Aux1: return "Aux1"; case Aux2: return "Aux2"; case Aux3: return "Aux3"; case Aux4: return "Aux4"; case Aux5: return "Aux5"; case Aux6: return "Aux6"; case Aux7: return "Aux7"; case Aux8: return "Aux8"; case Aux9: return "Aux9"; case Aux10: return "Aux10"; case Aux11: return "Aux11"; case Aux12: return "Aux12"; case Aux13: return "Aux13"; case Aux14: return "Aux14"; case Aux15: return "Aux15"; case MaxChannels: break; } return "(unknown)"; } std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate) { auto stablizer = FrontStablizer::Create(outchans); for(auto &buf : stablizer->DelayBuf) std::fill(buf.begin(), buf.end(), 0.0f); /* Initialize band-splitting filter for the mid signal, with a crossover at * 5khz (could be higher). */ stablizer->MidFilter.init(5000.0f / static_cast<float>(srate)); return stablizer; } void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans) { TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans); /* Allocate extra channels for any post-filter output. */ const size_t num_chans{main_chans + real_chans}; TRACE("Allocating %zu channels, %zu bytes\n", num_chans, num_chans*sizeof(device->MixBuffer[0])); device->MixBuffer.resize(num_chans); al::span<FloatBufferLine> buffer{device->MixBuffer}; device->Dry.Buffer = buffer.first(main_chans); buffer = buffer.subspan(main_chans); if(real_chans != 0) { device->RealOut.Buffer = buffer.first(real_chans); buffer = buffer.subspan(real_chans); } else device->RealOut.Buffer = device->Dry.Buffer; } using ChannelCoeffs = std::array<float,MaxAmbiChannels>; enum DecoderMode : bool { SingleBand = false, DualBand = true }; template<DecoderMode Mode, size_t N> struct DecoderConfig; template<size_t N> struct DecoderConfig<SingleBand, N> { uint8_t mOrder{}; bool mIs3D{}; std::array<Channel,N> mChannels{}; DevAmbiScaling mScaling{}; std::array<float,MaxAmbiOrder+1> mOrderGain{}; std::array<ChannelCoeffs,N> mCoeffs{}; }; template<size_t N> struct DecoderConfig<DualBand, N> { uint8_t mOrder{}; bool mIs3D{}; std::array<Channel,N> mChannels{}; DevAmbiScaling mScaling{}; std::array<float,MaxAmbiOrder+1> mOrderGain{}; std::array<ChannelCoeffs,N> mCoeffs{}; std::array<float,MaxAmbiOrder+1> mOrderGainLF{}; std::array<ChannelCoeffs,N> mCoeffsLF{}; }; template<> struct DecoderConfig<DualBand, 0> { uint8_t mOrder{}; bool mIs3D{}; al::span<const Channel> mChannels; DevAmbiScaling mScaling{}; al::span<const float> mOrderGain; al::span<const ChannelCoeffs> mCoeffs; al::span<const float> mOrderGainLF; al::span<const ChannelCoeffs> mCoeffsLF; template<size_t N> DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept { mOrder = rhs.mOrder; mIs3D = rhs.mIs3D; mChannels = rhs.mChannels; mScaling = rhs.mScaling; mOrderGain = rhs.mOrderGain; mCoeffs = rhs.mCoeffs; mOrderGainLF = {}; mCoeffsLF = {}; return *this; } template<size_t N> DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept { mOrder = rhs.mOrder; mIs3D = rhs.mIs3D; mChannels = rhs.mChannels; mScaling = rhs.mScaling; mOrderGain = rhs.mOrderGain; mCoeffs = rhs.mCoeffs; mOrderGainLF = rhs.mOrderGainLF; mCoeffsLF = rhs.mCoeffsLF; return *this; } explicit operator bool() const noexcept { return mOrder != 0; } }; using DecoderView = DecoderConfig<DualBand, 0>; void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d) { static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 }; static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 }; /* NFC is only used when AvgSpeakerDist is greater than 0. */ if(!device->getConfigValueBool("decoder", "nfc", 0) || !(ctrl_dist > 0.0f)) return; device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f); TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist); const float w1{SpeedOfSoundMetersPerSec / (device->AvgSpeakerDist * static_cast<float>(device->Frequency))}; device->mNFCtrlFilter.init(w1); auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u, std::begin(device->NumChannelsPerOrder)); std::fill(iter, std::end(device->NumChannelsPerOrder), 0u); } void InitDistanceComp(ALCdevice *device, const al::span<const Channel> channels, const al::span<const float,MAX_OUTPUT_CHANNELS> dists) { const float maxdist{std::accumulate(std::begin(dists), std::end(dists), 0.0f, maxf)}; if(!device->getConfigValueBool("decoder", "distance-comp", 1) || !(maxdist > 0.0f)) return; const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec; std::vector<DistanceComp::ChanData> ChanDelay; ChanDelay.reserve(device->RealOut.Buffer.size()); size_t total{0u}; for(size_t chidx{0};chidx < channels.size();++chidx) { const Channel ch{channels[chidx]}; const uint idx{device->RealOut.ChannelIndex[ch]}; if(idx == INVALID_CHANNEL_INDEX) continue; const float distance{dists[chidx]}; /* Distance compensation only delays in steps of the sample rate. This * is a bit less accurate since the delay time falls to the nearest * sample time, but it's far simpler as it doesn't have to deal with * phase offsets. This means at 48khz, for instance, the distance delay * will be in steps of about 7 millimeters. */ float delay{std::floor((maxdist - distance)*distSampleScale + 0.5f)}; if(delay > float{MAX_DELAY_LENGTH-1}) { ERR("Delay for channel %u (%s) exceeds buffer length (%f > %d)\n", idx, GetLabelFromChannel(ch), delay, MAX_DELAY_LENGTH-1); delay = float{MAX_DELAY_LENGTH-1}; } ChanDelay.resize(maxz(ChanDelay.size(), idx+1)); ChanDelay[idx].Length = static_cast<uint>(delay); ChanDelay[idx].Gain = distance / maxdist; TRACE("Channel %s distance comp: %u samples, %f gain\n", GetLabelFromChannel(ch), ChanDelay[idx].Length, ChanDelay[idx].Gain); /* Round up to the next 4th sample, so each channel buffer starts * 16-byte aligned. */ total += RoundUp(ChanDelay[idx].Length, 4); } if(total > 0) { auto chandelays = DistanceComp::Create(total); ChanDelay[0].Buffer = chandelays->mSamples.data(); auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur) -> DistanceComp::ChanData { DistanceComp::ChanData ret{cur}; ret.Buffer = last.Buffer + RoundUp(last.Length, 4); return ret; }; std::partial_sum(ChanDelay.begin(), ChanDelay.end(), chandelays->mChannels.begin(), set_bufptr); device->ChannelDelays = std::move(chandelays); } } inline auto& GetAmbiScales(DevAmbiScaling scaletype) noexcept { if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa(); if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D(); return AmbiScale::FromN3D(); } inline auto& GetAmbiLayout(DevAmbiLayout layouttype) noexcept { if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa(); return AmbiIndex::FromACN(); } DecoderView MakeDecoderView(ALCdevice *device, const AmbDecConf *conf, DecoderConfig<DualBand, MAX_OUTPUT_CHANNELS> &decoder) { DecoderView ret{}; decoder.mOrder = (conf->ChanMask > Ambi2OrderMask) ? uint8_t{3} : (conf->ChanMask > Ambi1OrderMask) ? uint8_t{2} : uint8_t{1}; decoder.mIs3D = (conf->ChanMask&AmbiPeriphonicMask) != 0; switch(conf->CoeffScale) { case AmbDecScale::N3D: decoder.mScaling = DevAmbiScaling::N3D; break; case AmbDecScale::SN3D: decoder.mScaling = DevAmbiScaling::SN3D; break; case AmbDecScale::FuMa: decoder.mScaling = DevAmbiScaling::FuMa; break; } std::copy_n(std::begin(conf->HFOrderGain), std::min(al::size(conf->HFOrderGain), al::size(decoder.mOrderGain)), std::begin(decoder.mOrderGain)); std::copy_n(std::begin(conf->LFOrderGain), std::min(al::size(conf->LFOrderGain), al::size(decoder.mOrderGainLF)), std::begin(decoder.mOrderGainLF)); std::array<uint8_t,MaxAmbiChannels> idx_map{}; if(decoder.mIs3D) { uint flags{conf->ChanMask}; auto elem = idx_map.begin(); while(flags) { int acn{al::countr_zero(flags)}; flags &= ~(1u<<acn); *elem = static_cast<uint8_t>(acn); ++elem; } } else { uint flags{conf->ChanMask}; auto elem = idx_map.begin(); while(flags) { int acn{al::countr_zero(flags)}; flags &= ~(1u<<acn); switch(acn) { case 0: *elem = 0; break; case 1: *elem = 1; break; case 3: *elem = 2; break; case 4: *elem = 3; break; case 8: *elem = 4; break; case 9: *elem = 5; break; case 15: *elem = 6; break; default: return ret; } ++elem; } } const auto num_coeffs = static_cast<uint>(al::popcount(conf->ChanMask)); const auto hfmatrix = conf->HFMatrix; const auto lfmatrix = conf->LFMatrix; uint chan_count{0}; using const_speaker_span = al::span<const AmbDecConf::SpeakerConf>; for(auto &speaker : const_speaker_span{conf->Speakers.get(), conf->NumSpeakers}) { /* NOTE: AmbDec does not define any standard speaker names, however * for this to work we have to by able to find the output channel * the speaker definition corresponds to. Therefore, OpenAL Soft * requires these channel labels to be recognized: * * LF = Front left * RF = Front right * LS = Side left * RS = Side right * LB = Back left * RB = Back right * CE = Front center * CB = Back center * * Additionally, surround51 will acknowledge back speakers for side * channels, to avoid issues with an ambdec expecting 5.1 to use the * back channels. */ Channel ch{}; if(speaker.Name == "LF") ch = FrontLeft; else if(speaker.Name == "RF") ch = FrontRight; else if(speaker.Name == "CE") ch = FrontCenter; else if(speaker.Name == "LS") ch = SideLeft; else if(speaker.Name == "RS") ch = SideRight; else if(speaker.Name == "LB") ch = (device->FmtChans == DevFmtX51) ? SideLeft : BackLeft; else if(speaker.Name == "RB") ch = (device->FmtChans == DevFmtX51) ? SideRight : BackRight; else if(speaker.Name == "CB") ch = BackCenter; else { int idx{}; char c{}; if(sscanf(speaker.Name.c_str(), "AUX%d%c", &idx, &c) != 1 || idx < 0 || idx >= MaxChannels-Aux0) { ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str()); continue; } ch = static_cast<Channel>(Aux0+idx); } decoder.mChannels[chan_count] = ch; for(size_t src{0};src < num_coeffs;++src) { const size_t dst{idx_map[src]}; decoder.mCoeffs[chan_count][dst] = hfmatrix[chan_count][src]; } if(conf->FreqBands > 1) { for(size_t src{0};src < num_coeffs;++src) { const size_t dst{idx_map[src]}; decoder.mCoeffsLF[chan_count][dst] = lfmatrix[chan_count][src]; } } ++chan_count; } if(chan_count > 0) { ret.mOrder = decoder.mOrder; ret.mIs3D = decoder.mIs3D; ret.mScaling = decoder.mScaling; ret.mChannels = {decoder.mChannels.data(), chan_count}; ret.mOrderGain = decoder.mOrderGain; ret.mCoeffs = {decoder.mCoeffs.data(), chan_count}; if(conf->FreqBands > 1) { ret.mOrderGainLF = decoder.mOrderGainLF; ret.mCoeffsLF = {decoder.mCoeffsLF.data(), chan_count}; } } return ret; } constexpr DecoderConfig<SingleBand, 1> MonoConfig{ 0, false, {{FrontCenter}}, DevAmbiScaling::N3D, {{1.0f}}, {{ {{1.0f}} }} }; constexpr DecoderConfig<SingleBand, 2> StereoConfig{ 1, false, {{FrontLeft, FrontRight}}, DevAmbiScaling::N3D, {{1.0f, 1.0f}}, {{ {{5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f}}, {{5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f}}, }} }; constexpr DecoderConfig<DualBand, 4> QuadConfig{ 2, false, {{BackLeft, FrontLeft, FrontRight, BackRight}}, DevAmbiScaling::N3D, /*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}}, {{ {{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}}, }}, /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}}, {{ {{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}}, {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}}, }} }; constexpr DecoderConfig<DualBand, 5> X51Config{ 2, false, {{SideLeft, FrontLeft, FrontCenter, FrontRight, SideRight}}, DevAmbiScaling::FuMa, /*HF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}}, {{ {{5.67316000e-1f, 4.22920000e-1f, -3.15495000e-1f, -6.34490000e-2f, -2.92380000e-2f}}, {{3.68584000e-1f, 2.72349000e-1f, 3.21616000e-1f, 1.92645000e-1f, 4.82600000e-2f}}, {{1.83579000e-1f, 0.00000000e+0f, 1.99588000e-1f, 0.00000000e+0f, 9.62820000e-2f}}, {{3.68584000e-1f, -2.72349000e-1f, 3.21616000e-1f, -1.92645000e-1f, 4.82600000e-2f}}, {{5.67316000e-1f, -4.22920000e-1f, -3.15495000e-1f, 6.34490000e-2f, -2.92380000e-2f}}, }}, /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}}, {{ {{4.90109850e-1f, 3.77305010e-1f, -3.73106990e-1f, -1.25914530e-1f, 1.45133000e-2f}}, {{1.49085730e-1f, 3.03561680e-1f, 1.53290060e-1f, 2.45112480e-1f, -1.50753130e-1f}}, {{1.37654920e-1f, 0.00000000e+0f, 4.49417940e-1f, 0.00000000e+0f, 2.57844070e-1f}}, {{1.49085730e-1f, -3.03561680e-1f, 1.53290060e-1f, -2.45112480e-1f, -1.50753130e-1f}}, {{4.90109850e-1f, -3.77305010e-1f, -3.73106990e-1f, 1.25914530e-1f, 1.45133000e-2f}}, }} }; constexpr DecoderConfig<SingleBand, 5> X61Config{ 2, false, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}}, DevAmbiScaling::N3D, {{1.0f, 1.0f, 1.0f}}, {{ {{2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}}, {{1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f}}, {{1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f}}, {{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f}}, {{2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f}}, }} }; constexpr DecoderConfig<DualBand, 6> X71Config{ 3, false, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}}, DevAmbiScaling::N3D, /*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}}, {{ {{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}}, }}, /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}}, {{ {{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}}, {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}}, }} }; constexpr DecoderConfig<DualBand, 6> X3D71Config{ 1, true, {{Aux0, SideLeft, FrontLeft, FrontRight, SideRight, Aux1}}, DevAmbiScaling::N3D, /*HF*/{{1.73205081e+0f, 1.00000000e+0f}}, {{ {{1.66669447e-1f, 0.00000000e+0f, 2.36070520e-1f, -1.66153012e-1f}}, {{1.66669447e-1f, 2.04127551e-1f, -1.17487922e-1f, -1.66927066e-1f}}, {{1.66669447e-1f, 2.04127551e-1f, 1.17487922e-1f, 1.66927066e-1f}}, {{1.66669447e-1f, -2.04127551e-1f, 1.17487922e-1f, 1.66927066e-1f}}, {{1.66669447e-1f, -2.04127551e-1f, -1.17487922e-1f, -1.66927066e-1f}}, {{1.66669447e-1f, 0.00000000e+0f, -2.36070520e-1f, 1.66153012e-1f}}, }}, /*LF*/{{1.00000000e+0f, 1.00000000e+0f}}, {{ {{1.66669447e-1f, 0.00000000e+0f, 2.36070520e-1f, -1.66153012e-1f}}, {{1.66669447e-1f, 2.04127551e-1f, -1.17487922e-1f, -1.66927066e-1f}}, {{1.66669447e-1f, 2.04127551e-1f, 1.17487922e-1f, 1.66927066e-1f}}, {{1.66669447e-1f, -2.04127551e-1f, 1.17487922e-1f, 1.66927066e-1f}}, {{1.66669447e-1f, -2.04127551e-1f, -1.17487922e-1f, -1.66927066e-1f}}, {{1.66669447e-1f, 0.00000000e+0f, -2.36070520e-1f, 1.66153012e-1f}}, }} }; void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false, DecoderView decoder={}) { if(!decoder) { switch(device->FmtChans) { case DevFmtMono: decoder = MonoConfig; break; case DevFmtStereo: decoder = StereoConfig; break; case DevFmtQuad: decoder = QuadConfig; break; case DevFmtX51: decoder = X51Config; break; case DevFmtX61: decoder = X61Config; break; case DevFmtX71: decoder = X71Config; break; case DevFmtX3D71: decoder = X3D71Config; break; case DevFmtAmbi3D: auto&& acnmap = GetAmbiLayout(device->mAmbiLayout); auto&& n3dscale = GetAmbiScales(device->mAmbiScale); /* For DevFmtAmbi3D, the ambisonic order is already set. */ const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)}; std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap), [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/n3dscale[acn], acn}; }); AllocChannels(device, count, 0); float nfc_delay{device->configValue<float>("decoder", "nfc-ref-delay").value_or(0.0f)}; if(nfc_delay > 0.0f) InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder, true); return; } } const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()}; al::vector<ChannelDec> chancoeffs, chancoeffslf; for(size_t i{0u};i < decoder.mChannels.size();++i) { const uint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])}; if(idx == INVALID_CHANNEL_INDEX) { ERR("Failed to find %s channel in device\n", GetLabelFromChannel(decoder.mChannels[i])); continue; } chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{}); al::span<float,MaxAmbiChannels> coeffs{chancoeffs[idx]}; size_t ambichan{0}; for(uint o{0};o < decoder.mOrder+1u;++o) { const float order_gain{decoder.mOrderGain[o]}; const size_t order_max{decoder.mIs3D ? AmbiChannelsFromOrder(o) : Ambi2DChannelsFromOrder(o)}; for(;ambichan < order_max;++ambichan) coeffs[ambichan] = decoder.mCoeffs[i][ambichan] * order_gain; } if(!dual_band) continue; chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{}); coeffs = chancoeffslf[idx]; ambichan = 0; for(uint o{0};o < decoder.mOrder+1u;++o) { const float order_gain{decoder.mOrderGainLF[o]}; const size_t order_max{decoder.mIs3D ? AmbiChannelsFromOrder(o) : Ambi2DChannelsFromOrder(o)}; for(;ambichan < order_max;++ambichan) coeffs[ambichan] = decoder.mCoeffsLF[i][ambichan] * order_gain; } } /* For non-DevFmtAmbi3D, set the ambisonic order. */ device->mAmbiOrder = decoder.mOrder; const size_t ambicount{decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder) : Ambi2DChannelsFromOrder(decoder.mOrder)}; const al::span<const uint8_t> acnmap{decoder.mIs3D ? AmbiIndex::FromACN().data() : AmbiIndex::FromACN2D().data(), ambicount}; auto&& coeffscale = GetAmbiScales(decoder.mScaling); std::transform(acnmap.begin(), acnmap.end(), std::begin(device->Dry.AmbiMap), [&coeffscale](const uint8_t &acn) noexcept { return BFChannelConfig{1.0f/coeffscale[acn], acn}; }); AllocChannels(device, ambicount, device->channelsFromFmt()); std::unique_ptr<FrontStablizer> stablizer; if(stablize) { /* Only enable the stablizer if the decoder does not output to the * front-center channel. */ const auto cidx = device->RealOut.ChannelIndex[FrontCenter]; bool hasfc{false}; if(cidx < chancoeffs.size()) { for(const auto &coeff : chancoeffs[cidx]) hasfc |= coeff != 0.0f; } if(!hasfc && cidx < chancoeffslf.size()) { for(const auto &coeff : chancoeffslf[cidx]) hasfc |= coeff != 0.0f; } if(!hasfc) { stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency); TRACE("Front stablizer enabled\n"); } } TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", !dual_band ? "single" : "dual", (decoder.mOrder > 2) ? "third" : (decoder.mOrder > 1) ? "second" : "first", decoder.mIs3D ? " periphonic" : ""); device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf, device->mXOverFreq/static_cast<float>(device->Frequency), std::move(stablizer)); } void InitHrtfPanning(ALCdevice *device) { constexpr float Deg180{al::numbers::pi_v<float>}; constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/}; constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/}; constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/}; constexpr float Deg_35{6.154797087e-01f /* 35~ 36 degrees*/}; constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/}; constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/}; constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/}; static const AngularPoint AmbiPoints1O[]{ { EvRadians{ Deg_35}, AzRadians{-Deg_45} }, { EvRadians{ Deg_35}, AzRadians{-Deg135} }, { EvRadians{ Deg_35}, AzRadians{ Deg_45} }, { EvRadians{ Deg_35}, AzRadians{ Deg135} }, { EvRadians{-Deg_35}, AzRadians{-Deg_45} }, { EvRadians{-Deg_35}, AzRadians{-Deg135} }, { EvRadians{-Deg_35}, AzRadians{ Deg_45} }, { EvRadians{-Deg_35}, AzRadians{ Deg135} }, }, AmbiPoints2O[]{ { EvRadians{ 0.0f}, AzRadians{ 0.0f} }, { EvRadians{ 0.0f}, AzRadians{ Deg180} }, { EvRadians{ 0.0f}, AzRadians{-Deg_90} }, { EvRadians{ 0.0f}, AzRadians{ Deg_90} }, { EvRadians{ Deg_90}, AzRadians{ 0.0f} }, { EvRadians{-Deg_90}, AzRadians{ 0.0f} }, { EvRadians{ Deg_35}, AzRadians{-Deg_45} }, { EvRadians{ Deg_35}, AzRadians{-Deg135} }, { EvRadians{ Deg_35}, AzRadians{ Deg_45} }, { EvRadians{ Deg_35}, AzRadians{ Deg135} }, { EvRadians{-Deg_35}, AzRadians{-Deg_45} }, { EvRadians{-Deg_35}, AzRadians{-Deg135} }, { EvRadians{-Deg_35}, AzRadians{ Deg_45} }, { EvRadians{-Deg_35}, AzRadians{ Deg135} }, }, AmbiPoints3O[]{ { EvRadians{ Deg_69}, AzRadians{-Deg_90} }, { EvRadians{ Deg_69}, AzRadians{ Deg_90} }, { EvRadians{-Deg_69}, AzRadians{-Deg_90} }, { EvRadians{-Deg_69}, AzRadians{ Deg_90} }, { EvRadians{ 0.0f}, AzRadians{-Deg_69} }, { EvRadians{ 0.0f}, AzRadians{-Deg111} }, { EvRadians{ 0.0f}, AzRadians{ Deg_69} }, { EvRadians{ 0.0f}, AzRadians{ Deg111} }, { EvRadians{ Deg_21}, AzRadians{ 0.0f} }, { EvRadians{ Deg_21}, AzRadians{ Deg180} }, { EvRadians{-Deg_21}, AzRadians{ 0.0f} }, { EvRadians{-Deg_21}, AzRadians{ Deg180} }, { EvRadians{ Deg_35}, AzRadians{-Deg_45} }, { EvRadians{ Deg_35}, AzRadians{-Deg135} }, { EvRadians{ Deg_35}, AzRadians{ Deg_45} }, { EvRadians{ Deg_35}, AzRadians{ Deg135} }, { EvRadians{-Deg_35}, AzRadians{-Deg_45} }, { EvRadians{-Deg_35}, AzRadians{-Deg135} }, { EvRadians{-Deg_35}, AzRadians{ Deg_45} }, { EvRadians{-Deg_35}, AzRadians{ Deg135} }, }; static const float AmbiMatrix1O[][MaxAmbiChannels]{ { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f }, }, AmbiMatrix2O[][MaxAmbiChannels]{ { 7.142857143e-02f, 0.000000000e+00f, 0.000000000e+00f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, 1.290994449e-01f, }, { 7.142857143e-02f, 0.000000000e+00f, 0.000000000e+00f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, 1.290994449e-01f, }, { 7.142857143e-02f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, -1.290994449e-01f, }, { 7.142857143e-02f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, -1.290994449e-01f, }, { 7.142857143e-02f, 0.000000000e+00f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 1.490711985e-01f, 0.000000000e+00f, 0.000000000e+00f, }, { 7.142857143e-02f, 0.000000000e+00f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 1.490711985e-01f, 0.000000000e+00f, 0.000000000e+00f, }, { 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, 9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, -9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, -9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, 9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, 9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, -9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, -9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }, { 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, 9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }, }, AmbiMatrix3O[][MaxAmbiChannels]{ { 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f, 0.000000000e+00f, 1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f, }, { 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, 1.256118221e-01f, 0.000000000e+00f, -1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f, }, { 5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f, 0.000000000e+00f, 1.126112056e-01f, -7.944389175e-02f, 0.000000000e+00f, -2.421151497e-02f, 0.000000000e+00f, }, { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, 1.256118221e-01f, 0.000000000e+00f, -1.126112056e-01f, -7.944389175e-02f, 0.000000000e+00f, -2.421151497e-02f, 0.000000000e+00f, }, { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f, 0.000000000e+00f, -2.950836627e-02f, 0.000000000e+00f, -1.497759251e-01f, 0.000000000e+00f, -7.763237543e-02f, }, { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f, 0.000000000e+00f, -2.950836627e-02f, 0.000000000e+00f, 1.497759251e-01f, 0.000000000e+00f, 7.763237543e-02f, }, { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, 7.763237543e-02f, 0.000000000e+00f, 2.950836627e-02f, 0.000000000e+00f, -1.497759251e-01f, 0.000000000e+00f, -7.763237543e-02f, }, { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, 7.763237543e-02f, 0.000000000e+00f, 2.950836627e-02f, 0.000000000e+00f, 1.497759251e-01f, 0.000000000e+00f, 7.763237543e-02f, }, { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 3.034486645e-02f, -6.779013272e-02f, 1.659481923e-01f, 4.797944664e-02f, }, { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 3.034486645e-02f, 6.779013272e-02f, 1.659481923e-01f, -4.797944664e-02f, }, { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -3.034486645e-02f, -6.779013272e-02f, -1.659481923e-01f, 4.797944664e-02f, }, { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -3.034486645e-02f, 6.779013272e-02f, -1.659481923e-01f, -4.797944664e-02f, }, { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, 6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f, 1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f, }, { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f, 1.482646439e-02f, }, { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f, 1.092600649e-02f, -7.364853795e-02f, 1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f, }, { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, 6.338656910e-02f, 1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f, 1.482646439e-02f, }, { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f, 7.364853795e-02f, 1.011266756e-01f, 7.086833869e-02f, -1.482646439e-02f, }, { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, 6.338656910e-02f, -1.092600649e-02f, 7.364853795e-02f, -1.011266756e-01f, 7.086833869e-02f, 1.482646439e-02f, }, { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, 6.338656910e-02f, 1.092600649e-02f, 7.364853795e-02f, 1.011266756e-01f, 7.086833869e-02f, -1.482646439e-02f, }, { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f, 1.092600649e-02f, 7.364853795e-02f, -1.011266756e-01f, 7.086833869e-02f, 1.482646439e-02f, }, }; static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{ /*ENRGY*/ 2.000000000e+00f, 1.154700538e+00f }, AmbiOrderHFGain2O[MaxAmbiOrder+1]{ /*ENRGY 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f*/ /*AMP 1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/ /*RMS*/ 9.128709292e-01f, 7.071067812e-01f, 3.651483717e-01f }, AmbiOrderHFGain3O[MaxAmbiOrder+1]{ /*ENRGY 1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f*/ /*AMP 1.000000000e+00f, 8.611363116e-01f, 6.123336207e-01f, 3.047469850e-01f*/ /*RMS*/ 8.340921354e-01f, 7.182670250e-01f, 5.107426573e-01f, 2.541870634e-01f }; static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch"); static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch"); static_assert(al::size(AmbiPoints3O) == al::size(AmbiMatrix3O), "Third-Order Ambisonic HRTF mismatch"); /* A 700hz crossover frequency provides tighter sound imaging at the sweet * spot with ambisonic decoding, as the distance between the ears is closer * to half this frequency wavelength, which is the optimal point where the * response should change between optimizing phase vs volume. Normally this * tighter imaging is at the cost of a smaller sweet spot, but since the * listener is fixed in the center of the HRTF responses for the decoder, * we don't have to worry about ever being out of the sweet spot. * * A better option here may be to have the head radius as part of the HRTF * data set and calculate the optimal crossover frequency from that. */ device->mXOverFreq = 700.0f; /* Don't bother with HOA when using full HRTF rendering. Nothing needs it, * and it eases the CPU/memory load. */ device->mRenderMode = RenderMode::Hrtf; uint ambi_order{1}; if(auto modeopt = device->configValue<std::string>(nullptr, "hrtf-mode")) { struct HrtfModeEntry { char name[8]; RenderMode mode; uint order; }; static const HrtfModeEntry hrtf_modes[]{ { "full", RenderMode::Hrtf, 1 }, { "ambi1", RenderMode::Normal, 1 }, { "ambi2", RenderMode::Normal, 2 }, { "ambi3", RenderMode::Normal, 3 }, }; const char *mode{modeopt->c_str()}; if(al::strcasecmp(mode, "basic") == 0) { ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2"); mode = "ambi2"; } auto match_entry = [mode](const HrtfModeEntry &entry) -> bool { return al::strcasecmp(mode, entry.name) == 0; }; auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry); if(iter == std::end(hrtf_modes)) ERR("Unexpected hrtf-mode: %s\n", mode); else { device->mRenderMode = iter->mode; ambi_order = iter->order; } } TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order, (((ambi_order%100)/10) == 1) ? "th" : ((ambi_order%10) == 1) ? "st" : ((ambi_order%10) == 2) ? "nd" : ((ambi_order%10) == 3) ? "rd" : "th", (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "", device->mHrtfName.c_str()); al::span<const AngularPoint> AmbiPoints{AmbiPoints1O}; const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O}; al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O}; if(ambi_order >= 3) { AmbiPoints = AmbiPoints3O; AmbiMatrix = AmbiMatrix3O; AmbiOrderHFGain = AmbiOrderHFGain3O; } else if(ambi_order == 2) { AmbiPoints = AmbiPoints2O; AmbiMatrix = AmbiMatrix2O; AmbiOrderHFGain = AmbiOrderHFGain2O; } device->mAmbiOrder = ambi_order; const size_t count{AmbiChannelsFromOrder(ambi_order)}; std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count, std::begin(device->Dry.AmbiMap), [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; } ); AllocChannels(device, count, device->channelsFromFmt()); HrtfStore *Hrtf{device->mHrtf.get()}; auto hrtfstate = DirectHrtfState::Create(count); hrtfstate->build(Hrtf, device->mIrSize, AmbiPoints, AmbiMatrix, device->mXOverFreq, AmbiOrderHFGain); device->mHrtfState = std::move(hrtfstate); InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true); } void InitUhjPanning(ALCdevice *device) { /* UHJ is always 2D first-order. */ constexpr size_t count{Ambi2DChannelsFromOrder(1)}; device->mAmbiOrder = 1; auto acnmap_begin = AmbiIndex::FromFuMa().begin(); std::transform(acnmap_begin, acnmap_begin + count, std::begin(device->Dry.AmbiMap), [](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/AmbiScale::FromUHJ()[acn], acn}; }); AllocChannels(device, count, device->channelsFromFmt()); } } // namespace void aluInitRenderer(ALCdevice *device, int hrtf_id, al::optional<StereoEncoding> stereomode) { /* Hold the HRTF the device last used, in case it's used again. */ HrtfStorePtr old_hrtf{std::move(device->mHrtf)}; device->mHrtfState = nullptr; device->mHrtf = nullptr; device->mIrSize = 0; device->mHrtfName.clear(); device->mXOverFreq = 400.0f; device->mRenderMode = RenderMode::Normal; if(device->FmtChans != DevFmtStereo) { old_hrtf = nullptr; if(stereomode && *stereomode == StereoEncoding::Hrtf) device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; const char *layout{nullptr}; switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: layout = "surround51"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; case DevFmtX3D71: layout = "surround3d71"; break; /* Mono, Stereo, and Ambisonics output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtAmbi3D: break; } std::unique_ptr<DecoderConfig<DualBand,MAX_OUTPUT_CHANNELS>> decoder_store; DecoderView decoder{}; float speakerdists[MAX_OUTPUT_CHANNELS]{}; auto load_config = [device,&decoder_store,&decoder,&speakerdists](const char *config) { AmbDecConf conf{}; if(auto err = conf.load(config)) { ERR("Failed to load layout file %s\n", config); ERR(" %s\n", err->c_str()); } else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS) ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers, MAX_OUTPUT_CHANNELS); else if(conf.ChanMask > Ambi3OrderMask) ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask, Ambi3OrderMask); else { device->mXOverFreq = clampf(conf.XOverFreq, 100.0f, 1000.0f); decoder_store = std::make_unique<DecoderConfig<DualBand,MAX_OUTPUT_CHANNELS>>(); decoder = MakeDecoderView(device, &conf, *decoder_store); for(size_t i{0};i < decoder.mChannels.size();++i) speakerdists[i] = conf.Speakers[i].Distance; } }; if(layout) { if(auto decopt = device->configValue<std::string>("decoder", layout)) load_config(decopt->c_str()); } /* Enable the stablizer only for formats that have front-left, front- * right, and front-center outputs. */ const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX && device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX && device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX && device->getConfigValueBool(nullptr, "front-stablizer", 0) != 0}; const bool hqdec{device->getConfigValueBool("decoder", "hq-mode", 1) != 0}; InitPanning(device, hqdec, stablize, decoder); if(decoder.mOrder > 0) { float accum_dist{0.0f}, spkr_count{0.0f}; for(auto dist : speakerdists) { if(dist > 0.0f) { accum_dist += dist; spkr_count += 1.0f; } } if(spkr_count > 0) { InitNearFieldCtrl(device, accum_dist / spkr_count, decoder.mOrder, decoder.mIs3D); InitDistanceComp(device, decoder.mChannels, speakerdists); } } if(auto *ambidec{device->AmbiDecoder.get()}) { device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized : &ALCdevice::ProcessAmbiDec; } return; } /* If HRTF is explicitly requested, or if there's no explicit request and * the device is headphones, try to enable it. */ if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Hrtf || (!stereomode && device->Flags.test(DirectEar))) { if(device->mHrtfList.empty()) device->enumerateHrtfs(); if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->mHrtfList.size()) { const std::string &hrtfname = device->mHrtfList[static_cast<uint>(hrtf_id)]; if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)}) { device->mHrtf = std::move(hrtf); device->mHrtfName = hrtfname; } } if(!device->mHrtf) { for(const auto &hrtfname : device->mHrtfList) { if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)}) { device->mHrtf = std::move(hrtf); device->mHrtfName = hrtfname; break; } } } if(device->mHrtf) { old_hrtf = nullptr; HrtfStore *hrtf{device->mHrtf.get()}; device->mIrSize = hrtf->irSize; if(auto hrtfsizeopt = device->configValue<uint>(nullptr, "hrtf-size")) { if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize) device->mIrSize = maxu(*hrtfsizeopt, MinIrLength); } InitHrtfPanning(device); device->PostProcess = &ALCdevice::ProcessHrtf; device->mHrtfStatus = ALC_HRTF_ENABLED_SOFT; return; } } old_hrtf = nullptr; if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Uhj) { device->mUhjEncoder = std::make_unique<UhjEncoder>(); TRACE("UHJ enabled\n"); InitUhjPanning(device); device->PostProcess = &ALCdevice::ProcessUhj; return; } device->mRenderMode = RenderMode::Pairwise; if(device->Type != DeviceType::Loopback) { if(auto cflevopt = device->configValue<int>(nullptr, "cf_level")) { if(*cflevopt > 0 && *cflevopt <= 6) { device->Bs2b = std::make_unique<bs2b>(); bs2b_set_params(device->Bs2b.get(), *cflevopt, static_cast<int>(device->Frequency)); TRACE("BS2B enabled\n"); InitPanning(device); device->PostProcess = &ALCdevice::ProcessBs2b; return; } } } TRACE("Stereo rendering\n"); InitPanning(device); device->PostProcess = &ALCdevice::ProcessAmbiDec; } void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context) { DeviceBase *device{context->mDevice}; const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)}; auto wetbuffer_iter = context->mWetBuffers.end(); if(slot->mWetBuffer) { /* If the effect slot already has a wet buffer attached, allocate a new * one in its place. */ wetbuffer_iter = context->mWetBuffers.begin(); for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter) { if(wetbuffer_iter->get() == slot->mWetBuffer) { slot->mWetBuffer = nullptr; slot->Wet.Buffer = {}; *wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}}; break; } } } if(wetbuffer_iter == context->mWetBuffers.end()) { /* Otherwise, search for an unused wet buffer. */ wetbuffer_iter = context->mWetBuffers.begin(); for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter) { if(!(*wetbuffer_iter)->mInUse) break; } if(wetbuffer_iter == context->mWetBuffers.end()) { /* Otherwise, allocate a new one to use. */ context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}}); wetbuffer_iter = context->mWetBuffers.end()-1; } } WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()}; wetbuffer->mInUse = true; auto acnmap_begin = AmbiIndex::FromACN().begin(); auto iter = std::transform(acnmap_begin, acnmap_begin + count, slot->Wet.AmbiMap.begin(), [](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f, acn}; }); std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{}); slot->Wet.Buffer = wetbuffer->mBuffer; }