/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2011 Zynga Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // #include "CCParticleSystem.h" #include "CCParticleBatchNode.h" #include "ccTypes.h" #include "textures/CCTextureCache.h" #include "textures/CCTextureAtlas.h" #include "support/base64.h" #include "support/CCPointExtension.h" #include "platform/CCFileUtils.h" #include "platform/CCImage.h" #include "platform/platform.h" #include "support/zip_support/ZipUtils.h" #include "CCDirector.h" #include "support/CCProfiling.h" // opengl #include "CCGL.h" #include using namespace std; NS_CC_BEGIN // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // CCParticleSystem::CCParticleSystem() : m_sPlistFile("") , m_fElapsed(0) , m_pParticles(NULL) , m_fEmitCounter(0) , m_uParticleIdx(0) , m_pBatchNode(NULL) , m_uAtlasIndex(0) , m_bTransformSystemDirty(false) , m_uAllocatedParticles(0) , m_bIsActive(true) , m_uParticleCount(0) , m_fDuration(0) , m_tSourcePosition(CCPointZero) , m_tPosVar(CCPointZero) , m_fLife(0) , m_fLifeVar(0) , m_fAngle(0) , m_fAngleVar(0) , m_fStartSize(0) , m_fStartSizeVar(0) , m_fEndSize(0) , m_fEndSizeVar(0) , m_fStartSpin(0) , m_fStartSpinVar(0) , m_fEndSpin(0) , m_fEndSpinVar(0) , m_fEmissionRate(0) , m_uTotalParticles(0) , m_pTexture(NULL) , m_bOpacityModifyRGB(false) , m_bIsBlendAdditive(false) , m_ePositionType(kCCPositionTypeFree) , m_bIsAutoRemoveOnFinish(false) , m_nEmitterMode(kCCParticleModeGravity) { modeA.gravity = CCPointZero; modeA.speed = 0; modeA.speedVar = 0; modeA.tangentialAccel = 0; modeA.tangentialAccelVar = 0; modeA.radialAccel = 0; modeA.radialAccelVar = 0; modeA.rotationIsDir = false; modeB.startRadius = 0; modeB.startRadiusVar = 0; modeB.endRadius = 0; modeB.endRadiusVar = 0; modeB.rotatePerSecond = 0; modeB.rotatePerSecondVar = 0; m_tBlendFunc.src = CC_BLEND_SRC; m_tBlendFunc.dst = CC_BLEND_DST; } // implementation CCParticleSystem CCParticleSystem * CCParticleSystem::create(const char *plistFile) { CCParticleSystem *pRet = new CCParticleSystem(); if (pRet && pRet->initWithFile(plistFile)) { pRet->autorelease(); return pRet; } CC_SAFE_DELETE(pRet); return pRet; } CCParticleSystem* CCParticleSystem::createWithTotalParticles(unsigned int numberOfParticles) { CCParticleSystem *pRet = new CCParticleSystem(); if (pRet && pRet->initWithTotalParticles(numberOfParticles)) { pRet->autorelease(); return pRet; } CC_SAFE_DELETE(pRet); return pRet; } bool CCParticleSystem::init() { return initWithTotalParticles(150); } bool CCParticleSystem::initWithFile(const char *plistFile) { bool bRet = false; m_sPlistFile = CCFileUtils::sharedFileUtils()->fullPathForFilename(plistFile); CCDictionary *dict = CCDictionary::createWithContentsOfFileThreadSafe(m_sPlistFile.c_str()); CCAssert( dict != NULL, "Particles: file not found"); // XXX compute path from a path, should define a function somewhere to do it string listFilePath = plistFile; if (listFilePath.find('/') != string::npos) { listFilePath = listFilePath.substr(0, listFilePath.rfind('/') + 1); bRet = this->initWithDictionary(dict, listFilePath.c_str()); } else { bRet = this->initWithDictionary(dict, ""); } dict->release(); return bRet; } bool CCParticleSystem::initWithDictionary(CCDictionary *dictionary) { return initWithDictionary(dictionary, ""); } bool CCParticleSystem::initWithDictionary(CCDictionary *dictionary, const char *dirname) { bool bRet = false; unsigned char *buffer = NULL; unsigned char *deflated = NULL; CCImage *image = NULL; do { int maxParticles = dictionary->valueForKey("maxParticles")->intValue(); // self, not super if(this->initWithTotalParticles(maxParticles)) { // angle m_fAngle = dictionary->valueForKey("angle")->floatValue(); m_fAngleVar = dictionary->valueForKey("angleVariance")->floatValue(); // duration m_fDuration = dictionary->valueForKey("duration")->floatValue(); // blend function m_tBlendFunc.src = dictionary->valueForKey("blendFuncSource")->intValue(); m_tBlendFunc.dst = dictionary->valueForKey("blendFuncDestination")->intValue(); // color m_tStartColor.r = dictionary->valueForKey("startColorRed")->floatValue(); m_tStartColor.g = dictionary->valueForKey("startColorGreen")->floatValue(); m_tStartColor.b = dictionary->valueForKey("startColorBlue")->floatValue(); m_tStartColor.a = dictionary->valueForKey("startColorAlpha")->floatValue(); m_tStartColorVar.r = dictionary->valueForKey("startColorVarianceRed")->floatValue(); m_tStartColorVar.g = dictionary->valueForKey("startColorVarianceGreen")->floatValue(); m_tStartColorVar.b = dictionary->valueForKey("startColorVarianceBlue")->floatValue(); m_tStartColorVar.a = dictionary->valueForKey("startColorVarianceAlpha")->floatValue(); m_tEndColor.r = dictionary->valueForKey("finishColorRed")->floatValue(); m_tEndColor.g = dictionary->valueForKey("finishColorGreen")->floatValue(); m_tEndColor.b = dictionary->valueForKey("finishColorBlue")->floatValue(); m_tEndColor.a = dictionary->valueForKey("finishColorAlpha")->floatValue(); m_tEndColorVar.r = dictionary->valueForKey("finishColorVarianceRed")->floatValue(); m_tEndColorVar.g = dictionary->valueForKey("finishColorVarianceGreen")->floatValue(); m_tEndColorVar.b = dictionary->valueForKey("finishColorVarianceBlue")->floatValue(); m_tEndColorVar.a = dictionary->valueForKey("finishColorVarianceAlpha")->floatValue(); // particle size m_fStartSize = dictionary->valueForKey("startParticleSize")->floatValue(); m_fStartSizeVar = dictionary->valueForKey("startParticleSizeVariance")->floatValue(); m_fEndSize = dictionary->valueForKey("finishParticleSize")->floatValue(); m_fEndSizeVar = dictionary->valueForKey("finishParticleSizeVariance")->floatValue(); // position float x = dictionary->valueForKey("sourcePositionx")->floatValue(); float y = dictionary->valueForKey("sourcePositiony")->floatValue(); this->setPosition( ccp(x,y) ); m_tPosVar.x = dictionary->valueForKey("sourcePositionVariancex")->floatValue(); m_tPosVar.y = dictionary->valueForKey("sourcePositionVariancey")->floatValue(); // Spinning m_fStartSpin = dictionary->valueForKey("rotationStart")->floatValue(); m_fStartSpinVar = dictionary->valueForKey("rotationStartVariance")->floatValue(); m_fEndSpin= dictionary->valueForKey("rotationEnd")->floatValue(); m_fEndSpinVar= dictionary->valueForKey("rotationEndVariance")->floatValue(); m_nEmitterMode = dictionary->valueForKey("emitterType")->intValue(); // Mode A: Gravity + tangential accel + radial accel if( m_nEmitterMode == kCCParticleModeGravity ) { // gravity modeA.gravity.x = dictionary->valueForKey("gravityx")->floatValue(); modeA.gravity.y = dictionary->valueForKey("gravityy")->floatValue(); // speed modeA.speed = dictionary->valueForKey("speed")->floatValue(); modeA.speedVar = dictionary->valueForKey("speedVariance")->floatValue(); // radial acceleration modeA.radialAccel = dictionary->valueForKey("radialAcceleration")->floatValue(); modeA.radialAccelVar = dictionary->valueForKey("radialAccelVariance")->floatValue(); // tangential acceleration modeA.tangentialAccel = dictionary->valueForKey("tangentialAcceleration")->floatValue(); modeA.tangentialAccelVar = dictionary->valueForKey("tangentialAccelVariance")->floatValue(); // rotation is dir modeA.rotationIsDir = dictionary->valueForKey("rotationIsDir")->boolValue(); } // or Mode B: radius movement else if( m_nEmitterMode == kCCParticleModeRadius ) { modeB.startRadius = dictionary->valueForKey("maxRadius")->floatValue(); modeB.startRadiusVar = dictionary->valueForKey("maxRadiusVariance")->floatValue(); modeB.endRadius = dictionary->valueForKey("minRadius")->floatValue(); modeB.endRadiusVar = 0.0f; modeB.rotatePerSecond = dictionary->valueForKey("rotatePerSecond")->floatValue(); modeB.rotatePerSecondVar = dictionary->valueForKey("rotatePerSecondVariance")->floatValue(); } else { CCAssert( false, "Invalid emitterType in config file"); CC_BREAK_IF(true); } // life span m_fLife = dictionary->valueForKey("particleLifespan")->floatValue(); m_fLifeVar = dictionary->valueForKey("particleLifespanVariance")->floatValue(); // emission Rate m_fEmissionRate = m_uTotalParticles / m_fLife; //don't get the internal texture if a batchNode is used if (!m_pBatchNode) { // Set a compatible default for the alpha transfer m_bOpacityModifyRGB = false; // texture // Try to get the texture from the cache std::string textureName = dictionary->valueForKey("textureFileName")->getCString(); size_t rPos = textureName.rfind('/'); if (rPos != string::npos) { string textureDir = textureName.substr(0, rPos + 1); if (dirname != NULL && textureDir != dirname) { textureName = textureName.substr(rPos+1); textureName = string(dirname) + textureName; } } else { if (dirname != NULL) { textureName = string(dirname) + textureName; } } CCTexture2D *tex = NULL; if (textureName.length() > 0) { // set not pop-up message box when load image failed bool bNotify = CCFileUtils::sharedFileUtils()->isPopupNotify(); CCFileUtils::sharedFileUtils()->setPopupNotify(false); tex = CCTextureCache::sharedTextureCache()->addImage(textureName.c_str()); // reset the value of UIImage notify CCFileUtils::sharedFileUtils()->setPopupNotify(bNotify); } if (tex) { setTexture(tex); } else { const char *textureData = dictionary->valueForKey("textureImageData")->getCString(); CCAssert(textureData, ""); int dataLen = strlen(textureData); if(dataLen != 0) { // if it fails, try to get it from the base64-gzipped data int decodeLen = base64Decode((unsigned char*)textureData, (unsigned int)dataLen, &buffer); CCAssert( buffer != NULL, "CCParticleSystem: error decoding textureImageData"); CC_BREAK_IF(!buffer); int deflatedLen = ZipUtils::ccInflateMemory(buffer, decodeLen, &deflated); CCAssert( deflated != NULL, "CCParticleSystem: error ungzipping textureImageData"); CC_BREAK_IF(!deflated); // For android, we should retain it in VolatileTexture::addCCImage which invoked in CCTextureCache::sharedTextureCache()->addUIImage() image = new CCImage(); bool isOK = image->initWithImageData(deflated, deflatedLen); CCAssert(isOK, "CCParticleSystem: error init image with Data"); CC_BREAK_IF(!isOK); setTexture(CCTextureCache::sharedTextureCache()->addUIImage(image, textureName.c_str())); image->release(); } } CCAssert( this->m_pTexture != NULL, "CCParticleSystem: error loading the texture"); } bRet = true; } } while (0); CC_SAFE_DELETE_ARRAY(buffer); CC_SAFE_DELETE_ARRAY(deflated); return bRet; } bool CCParticleSystem::initWithTotalParticles(unsigned int numberOfParticles) { m_uTotalParticles = numberOfParticles; CC_SAFE_FREE(m_pParticles); m_pParticles = (tCCParticle*)calloc(m_uTotalParticles, sizeof(tCCParticle)); if( ! m_pParticles ) { CCLOG("Particle system: not enough memory"); this->release(); return false; } m_uAllocatedParticles = numberOfParticles; if (m_pBatchNode) { for (unsigned int i = 0; i < m_uTotalParticles; i++) { m_pParticles[i].atlasIndex=i; } } // default, active m_bIsActive = true; // default blend function m_tBlendFunc.src = CC_BLEND_SRC; m_tBlendFunc.dst = CC_BLEND_DST; // default movement type; m_ePositionType = kCCPositionTypeFree; // by default be in mode A: m_nEmitterMode = kCCParticleModeGravity; // default: modulate // XXX: not used // colorModulate = YES; m_bIsAutoRemoveOnFinish = false; // Optimization: compile updateParticle method //updateParticleSel = @selector(updateQuadWithParticle:newPosition:); //updateParticleImp = (CC_UPDATE_PARTICLE_IMP) [self methodForSelector:updateParticleSel]; //for batchNode m_bTransformSystemDirty = false; // update after action in run! this->scheduleUpdateWithPriority(1); return true; } CCParticleSystem::~CCParticleSystem() { // Since the scheduler retains the "target (in this case the ParticleSystem) // it is not needed to call "unscheduleUpdate" here. In fact, it will be called in "cleanup" //unscheduleUpdate(); CC_SAFE_FREE(m_pParticles); CC_SAFE_RELEASE(m_pTexture); } bool CCParticleSystem::addParticle() { if (this->isFull()) { return false; } tCCParticle * particle = &m_pParticles[ m_uParticleCount ]; this->initParticle(particle); ++m_uParticleCount; return true; } void CCParticleSystem::initParticle(tCCParticle* particle) { // timeToLive // no negative life. prevent division by 0 particle->timeToLive = m_fLife + m_fLifeVar * CCRANDOM_MINUS1_1(); particle->timeToLive = MAX(0, particle->timeToLive); // position particle->pos.x = m_tSourcePosition.x + m_tPosVar.x * CCRANDOM_MINUS1_1(); particle->pos.y = m_tSourcePosition.y + m_tPosVar.y * CCRANDOM_MINUS1_1(); // Color ccColor4F start; start.r = clampf(m_tStartColor.r + m_tStartColorVar.r * CCRANDOM_MINUS1_1(), 0, 1); start.g = clampf(m_tStartColor.g + m_tStartColorVar.g * CCRANDOM_MINUS1_1(), 0, 1); start.b = clampf(m_tStartColor.b + m_tStartColorVar.b * CCRANDOM_MINUS1_1(), 0, 1); start.a = clampf(m_tStartColor.a + m_tStartColorVar.a * CCRANDOM_MINUS1_1(), 0, 1); ccColor4F end; end.r = clampf(m_tEndColor.r + m_tEndColorVar.r * CCRANDOM_MINUS1_1(), 0, 1); end.g = clampf(m_tEndColor.g + m_tEndColorVar.g * CCRANDOM_MINUS1_1(), 0, 1); end.b = clampf(m_tEndColor.b + m_tEndColorVar.b * CCRANDOM_MINUS1_1(), 0, 1); end.a = clampf(m_tEndColor.a + m_tEndColorVar.a * CCRANDOM_MINUS1_1(), 0, 1); particle->color = start; particle->deltaColor.r = (end.r - start.r) / particle->timeToLive; particle->deltaColor.g = (end.g - start.g) / particle->timeToLive; particle->deltaColor.b = (end.b - start.b) / particle->timeToLive; particle->deltaColor.a = (end.a - start.a) / particle->timeToLive; // size float startS = m_fStartSize + m_fStartSizeVar * CCRANDOM_MINUS1_1(); startS = MAX(0, startS); // No negative value particle->size = startS; if( m_fEndSize == kCCParticleStartSizeEqualToEndSize ) { particle->deltaSize = 0; } else { float endS = m_fEndSize + m_fEndSizeVar * CCRANDOM_MINUS1_1(); endS = MAX(0, endS); // No negative values particle->deltaSize = (endS - startS) / particle->timeToLive; } // rotation float startA = m_fStartSpin + m_fStartSpinVar * CCRANDOM_MINUS1_1(); float endA = m_fEndSpin + m_fEndSpinVar * CCRANDOM_MINUS1_1(); particle->rotation = startA; particle->deltaRotation = (endA - startA) / particle->timeToLive; // position if( m_ePositionType == kCCPositionTypeFree ) { particle->startPos = this->convertToWorldSpace(CCPointZero); } else if ( m_ePositionType == kCCPositionTypeRelative ) { particle->startPos = m_obPosition; } // direction float a = CC_DEGREES_TO_RADIANS( m_fAngle + m_fAngleVar * CCRANDOM_MINUS1_1() ); // Mode Gravity: A if (m_nEmitterMode == kCCParticleModeGravity) { CCPoint v(cosf( a ), sinf( a )); float s = modeA.speed + modeA.speedVar * CCRANDOM_MINUS1_1(); // direction particle->modeA.dir = ccpMult( v, s ); // radial accel particle->modeA.radialAccel = modeA.radialAccel + modeA.radialAccelVar * CCRANDOM_MINUS1_1(); // tangential accel particle->modeA.tangentialAccel = modeA.tangentialAccel + modeA.tangentialAccelVar * CCRANDOM_MINUS1_1(); // rotation is dir if(modeA.rotationIsDir) particle->rotation = -CC_RADIANS_TO_DEGREES(ccpToAngle(particle->modeA.dir)); } // Mode Radius: B else { // Set the default diameter of the particle from the source position float startRadius = modeB.startRadius + modeB.startRadiusVar * CCRANDOM_MINUS1_1(); float endRadius = modeB.endRadius + modeB.endRadiusVar * CCRANDOM_MINUS1_1(); particle->modeB.radius = startRadius; if(modeB.endRadius == kCCParticleStartRadiusEqualToEndRadius) { particle->modeB.deltaRadius = 0; } else { particle->modeB.deltaRadius = (endRadius - startRadius) / particle->timeToLive; } particle->modeB.angle = a; particle->modeB.degreesPerSecond = CC_DEGREES_TO_RADIANS(modeB.rotatePerSecond + modeB.rotatePerSecondVar * CCRANDOM_MINUS1_1()); } } void CCParticleSystem::stopSystem() { m_bIsActive = false; m_fElapsed = m_fDuration; m_fEmitCounter = 0; } void CCParticleSystem::resetSystem() { m_bIsActive = true; m_fElapsed = 0; for (m_uParticleIdx = 0; m_uParticleIdx < m_uParticleCount; ++m_uParticleIdx) { tCCParticle *p = &m_pParticles[m_uParticleIdx]; p->timeToLive = 0; } } bool CCParticleSystem::isFull() { return (m_uParticleCount == m_uTotalParticles); } // ParticleSystem - MainLoop void CCParticleSystem::update(float dt) { CC_PROFILER_START_CATEGORY(kCCProfilerCategoryParticles , "CCParticleSystem - update"); if (m_bIsActive && m_fEmissionRate) { float rate = 1.0f / m_fEmissionRate; //issue #1201, prevent bursts of particles, due to too high emitCounter if (m_uParticleCount < m_uTotalParticles) { m_fEmitCounter += dt; } while (m_uParticleCount < m_uTotalParticles && m_fEmitCounter > rate) { this->addParticle(); m_fEmitCounter -= rate; } m_fElapsed += dt; if (m_fDuration != -1 && m_fDuration < m_fElapsed) { this->stopSystem(); } } m_uParticleIdx = 0; CCPoint currentPosition = CCPointZero; if (m_ePositionType == kCCPositionTypeFree) { currentPosition = this->convertToWorldSpace(CCPointZero); } else if (m_ePositionType == kCCPositionTypeRelative) { currentPosition = m_obPosition; } if (m_bVisible) { while (m_uParticleIdx < m_uParticleCount) { tCCParticle *p = &m_pParticles[m_uParticleIdx]; // life p->timeToLive -= dt; if (p->timeToLive > 0) { // Mode A: gravity, direction, tangential accel & radial accel if (m_nEmitterMode == kCCParticleModeGravity) { CCPoint tmp, radial, tangential; radial = CCPointZero; // radial acceleration if (p->pos.x || p->pos.y) { radial = ccpNormalize(p->pos); } tangential = radial; radial = ccpMult(radial, p->modeA.radialAccel); // tangential acceleration float newy = tangential.x; tangential.x = -tangential.y; tangential.y = newy; tangential = ccpMult(tangential, p->modeA.tangentialAccel); // (gravity + radial + tangential) * dt tmp = ccpAdd( ccpAdd( radial, tangential), modeA.gravity); tmp = ccpMult( tmp, dt); p->modeA.dir = ccpAdd( p->modeA.dir, tmp); tmp = ccpMult(p->modeA.dir, dt); p->pos = ccpAdd( p->pos, tmp ); } // Mode B: radius movement else { // Update the angle and radius of the particle. p->modeB.angle += p->modeB.degreesPerSecond * dt; p->modeB.radius += p->modeB.deltaRadius * dt; p->pos.x = - cosf(p->modeB.angle) * p->modeB.radius; p->pos.y = - sinf(p->modeB.angle) * p->modeB.radius; } // color p->color.r += (p->deltaColor.r * dt); p->color.g += (p->deltaColor.g * dt); p->color.b += (p->deltaColor.b * dt); p->color.a += (p->deltaColor.a * dt); // size p->size += (p->deltaSize * dt); p->size = MAX( 0, p->size ); // angle p->rotation += (p->deltaRotation * dt); // // update values in quad // CCPoint newPos; if (m_ePositionType == kCCPositionTypeFree || m_ePositionType == kCCPositionTypeRelative) { CCPoint diff = ccpSub( currentPosition, p->startPos ); newPos = ccpSub(p->pos, diff); } else { newPos = p->pos; } // translate newPos to correct position, since matrix transform isn't performed in batchnode // don't update the particle with the new position information, it will interfere with the radius and tangential calculations if (m_pBatchNode) { newPos.x+=m_obPosition.x; newPos.y+=m_obPosition.y; } updateQuadWithParticle(p, newPos); //updateParticleImp(self, updateParticleSel, p, newPos); // update particle counter ++m_uParticleIdx; } else { // life < 0 int currentIndex = p->atlasIndex; if( m_uParticleIdx != m_uParticleCount-1 ) { m_pParticles[m_uParticleIdx] = m_pParticles[m_uParticleCount-1]; } if (m_pBatchNode) { //disable the switched particle m_pBatchNode->disableParticle(m_uAtlasIndex+currentIndex); //switch indexes m_pParticles[m_uParticleCount-1].atlasIndex = currentIndex; } --m_uParticleCount; if( m_uParticleCount == 0 && m_bIsAutoRemoveOnFinish ) { this->unscheduleUpdate(); m_pParent->removeChild(this, true); return; } } } //while m_bTransformSystemDirty = false; } if (! m_pBatchNode) { postStep(); } CC_PROFILER_STOP_CATEGORY(kCCProfilerCategoryParticles , "CCParticleSystem - update"); } void CCParticleSystem::updateWithNoTime(void) { this->update(0.0f); } void CCParticleSystem::updateQuadWithParticle(tCCParticle* particle, const CCPoint& newPosition) { CC_UNUSED_PARAM(particle); CC_UNUSED_PARAM(newPosition); // should be overridden } void CCParticleSystem::postStep() { // should be overridden } // ParticleSystem - CCTexture protocol void CCParticleSystem::setTexture(CCTexture2D* var) { if (m_pTexture != var) { CC_SAFE_RETAIN(var); CC_SAFE_RELEASE(m_pTexture); m_pTexture = var; updateBlendFunc(); } } void CCParticleSystem::updateBlendFunc() { CCAssert(! m_pBatchNode, "Can't change blending functions when the particle is being batched"); if(m_pTexture) { bool premultiplied = m_pTexture->hasPremultipliedAlpha(); m_bOpacityModifyRGB = false; if( m_pTexture && ( m_tBlendFunc.src == CC_BLEND_SRC && m_tBlendFunc.dst == CC_BLEND_DST ) ) { if( premultiplied ) { m_bOpacityModifyRGB = true; } else { m_tBlendFunc.src = GL_SRC_ALPHA; m_tBlendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; } } } } CCTexture2D * CCParticleSystem::getTexture() { return m_pTexture; } // ParticleSystem - Additive Blending void CCParticleSystem::setBlendAdditive(bool additive) { if( additive ) { m_tBlendFunc.src = GL_SRC_ALPHA; m_tBlendFunc.dst = GL_ONE; } else { if( m_pTexture && ! m_pTexture->hasPremultipliedAlpha() ) { m_tBlendFunc.src = GL_SRC_ALPHA; m_tBlendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; } else { m_tBlendFunc.src = CC_BLEND_SRC; m_tBlendFunc.dst = CC_BLEND_DST; } } } bool CCParticleSystem::isBlendAdditive() { return( m_tBlendFunc.src == GL_SRC_ALPHA && m_tBlendFunc.dst == GL_ONE); } // ParticleSystem - Properties of Gravity Mode void CCParticleSystem::setTangentialAccel(float t) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.tangentialAccel = t; } float CCParticleSystem::getTangentialAccel() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.tangentialAccel; } void CCParticleSystem::setTangentialAccelVar(float t) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.tangentialAccelVar = t; } float CCParticleSystem::getTangentialAccelVar() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.tangentialAccelVar; } void CCParticleSystem::setRadialAccel(float t) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.radialAccel = t; } float CCParticleSystem::getRadialAccel() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.radialAccel; } void CCParticleSystem::setRadialAccelVar(float t) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.radialAccelVar = t; } float CCParticleSystem::getRadialAccelVar() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.radialAccelVar; } void CCParticleSystem::setRotationIsDir(bool t) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.rotationIsDir = t; } bool CCParticleSystem::getRotationIsDir() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.rotationIsDir; } void CCParticleSystem::setGravity(const CCPoint& g) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.gravity = g; } const CCPoint& CCParticleSystem::getGravity() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.gravity; } void CCParticleSystem::setSpeed(float speed) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.speed = speed; } float CCParticleSystem::getSpeed() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.speed; } void CCParticleSystem::setSpeedVar(float speedVar) { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); modeA.speedVar = speedVar; } float CCParticleSystem::getSpeedVar() { CCAssert( m_nEmitterMode == kCCParticleModeGravity, "Particle Mode should be Gravity"); return modeA.speedVar; } // ParticleSystem - Properties of Radius Mode void CCParticleSystem::setStartRadius(float startRadius) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.startRadius = startRadius; } float CCParticleSystem::getStartRadius() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.startRadius; } void CCParticleSystem::setStartRadiusVar(float startRadiusVar) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.startRadiusVar = startRadiusVar; } float CCParticleSystem::getStartRadiusVar() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.startRadiusVar; } void CCParticleSystem::setEndRadius(float endRadius) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.endRadius = endRadius; } float CCParticleSystem::getEndRadius() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.endRadius; } void CCParticleSystem::setEndRadiusVar(float endRadiusVar) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.endRadiusVar = endRadiusVar; } float CCParticleSystem::getEndRadiusVar() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.endRadiusVar; } void CCParticleSystem::setRotatePerSecond(float degrees) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.rotatePerSecond = degrees; } float CCParticleSystem::getRotatePerSecond() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.rotatePerSecond; } void CCParticleSystem::setRotatePerSecondVar(float degrees) { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); modeB.rotatePerSecondVar = degrees; } float CCParticleSystem::getRotatePerSecondVar() { CCAssert( m_nEmitterMode == kCCParticleModeRadius, "Particle Mode should be Radius"); return modeB.rotatePerSecondVar; } bool CCParticleSystem::isActive() { return m_bIsActive; } unsigned int CCParticleSystem::getParticleCount() const { return m_uParticleCount; } float CCParticleSystem::getDuration() { return m_fDuration; } void CCParticleSystem::setDuration(float var) { m_fDuration = var; } const CCPoint& CCParticleSystem::getSourcePosition() { return m_tSourcePosition; } void CCParticleSystem::setSourcePosition(const CCPoint& var) { m_tSourcePosition = var; } const CCPoint& CCParticleSystem::getPosVar() { return m_tPosVar; } void CCParticleSystem::setPosVar(const CCPoint& var) { m_tPosVar = var; } float CCParticleSystem::getLife() { return m_fLife; } void CCParticleSystem::setLife(float var) { m_fLife = var; } float CCParticleSystem::getLifeVar() { return m_fLifeVar; } void CCParticleSystem::setLifeVar(float var) { m_fLifeVar = var; } float CCParticleSystem::getAngle() { return m_fAngle; } void CCParticleSystem::setAngle(float var) { m_fAngle = var; } float CCParticleSystem::getAngleVar() { return m_fAngleVar; } void CCParticleSystem::setAngleVar(float var) { m_fAngleVar = var; } float CCParticleSystem::getStartSize() { return m_fStartSize; } void CCParticleSystem::setStartSize(float var) { m_fStartSize = var; } float CCParticleSystem::getStartSizeVar() { return m_fStartSizeVar; } void CCParticleSystem::setStartSizeVar(float var) { m_fStartSizeVar = var; } float CCParticleSystem::getEndSize() { return m_fEndSize; } void CCParticleSystem::setEndSize(float var) { m_fEndSize = var; } float CCParticleSystem::getEndSizeVar() { return m_fEndSizeVar; } void CCParticleSystem::setEndSizeVar(float var) { m_fEndSizeVar = var; } const ccColor4F& CCParticleSystem::getStartColor() { return m_tStartColor; } void CCParticleSystem::setStartColor(const ccColor4F& var) { m_tStartColor = var; } const ccColor4F& CCParticleSystem::getStartColorVar() { return m_tStartColorVar; } void CCParticleSystem::setStartColorVar(const ccColor4F& var) { m_tStartColorVar = var; } const ccColor4F& CCParticleSystem::getEndColor() { return m_tEndColor; } void CCParticleSystem::setEndColor(const ccColor4F& var) { m_tEndColor = var; } const ccColor4F& CCParticleSystem::getEndColorVar() { return m_tEndColorVar; } void CCParticleSystem::setEndColorVar(const ccColor4F& var) { m_tEndColorVar = var; } float CCParticleSystem::getStartSpin() { return m_fStartSpin; } void CCParticleSystem::setStartSpin(float var) { m_fStartSpin = var; } float CCParticleSystem::getStartSpinVar() { return m_fStartSpinVar; } void CCParticleSystem::setStartSpinVar(float var) { m_fStartSpinVar = var; } float CCParticleSystem::getEndSpin() { return m_fEndSpin; } void CCParticleSystem::setEndSpin(float var) { m_fEndSpin = var; } float CCParticleSystem::getEndSpinVar() { return m_fEndSpinVar; } void CCParticleSystem::setEndSpinVar(float var) { m_fEndSpinVar = var; } float CCParticleSystem::getEmissionRate() { return m_fEmissionRate; } void CCParticleSystem::setEmissionRate(float var) { m_fEmissionRate = var; } unsigned int CCParticleSystem::getTotalParticles() { return m_uTotalParticles; } void CCParticleSystem::setTotalParticles(unsigned int var) { CCAssert( var <= m_uAllocatedParticles, "Particle: resizing particle array only supported for quads"); m_uTotalParticles = var; } ccBlendFunc CCParticleSystem::getBlendFunc() { return m_tBlendFunc; } void CCParticleSystem::setBlendFunc(ccBlendFunc blendFunc) { if( m_tBlendFunc.src != blendFunc.src || m_tBlendFunc.dst != blendFunc.dst ) { m_tBlendFunc = blendFunc; this->updateBlendFunc(); } } bool CCParticleSystem::getOpacityModifyRGB() { return m_bOpacityModifyRGB; } void CCParticleSystem::setOpacityModifyRGB(bool bOpacityModifyRGB) { m_bOpacityModifyRGB = bOpacityModifyRGB; } tCCPositionType CCParticleSystem::getPositionType() { return m_ePositionType; } void CCParticleSystem::setPositionType(tCCPositionType var) { m_ePositionType = var; } bool CCParticleSystem::isAutoRemoveOnFinish() { return m_bIsAutoRemoveOnFinish; } void CCParticleSystem::setAutoRemoveOnFinish(bool var) { m_bIsAutoRemoveOnFinish = var; } int CCParticleSystem::getEmitterMode() { return m_nEmitterMode; } void CCParticleSystem::setEmitterMode(int var) { m_nEmitterMode = var; } // ParticleSystem - methods for batchNode rendering CCParticleBatchNode* CCParticleSystem::getBatchNode(void) { return m_pBatchNode; } void CCParticleSystem::setBatchNode(CCParticleBatchNode* batchNode) { if( m_pBatchNode != batchNode ) { m_pBatchNode = batchNode; // weak reference if( batchNode ) { //each particle needs a unique index for (unsigned int i = 0; i < m_uTotalParticles; i++) { m_pParticles[i].atlasIndex=i; } } } } //don't use a transform matrix, this is faster void CCParticleSystem::setScale(float s) { m_bTransformSystemDirty = true; CCNode::setScale(s); } void CCParticleSystem::setRotation(float newRotation) { m_bTransformSystemDirty = true; CCNode::setRotation(newRotation); } void CCParticleSystem::setScaleX(float newScaleX) { m_bTransformSystemDirty = true; CCNode::setScaleX(newScaleX); } void CCParticleSystem::setScaleY(float newScaleY) { m_bTransformSystemDirty = true; CCNode::setScaleY(newScaleY); } NS_CC_END