// ---------------------------------------------------------------------------- // This confidential and proprietary software may be used only as authorised // by a licensing agreement from Arm Limited. // (C) COPYRIGHT 2011-2019 Arm Limited, ALL RIGHTS RESERVED // The entire notice above must be reproduced on all authorised copies and // copies may only be made to the extent permitted by a licensing agreement // from Arm Limited. // ---------------------------------------------------------------------------- /** * @brief Functions for converting between symbolic and physical encodings. */ #include "astc_codec_internals.h" // routine to write up to 8 bits static inline void write_bits(int value, int bitcount, int bitoffset, uint8_t * ptr) { int mask = (1 << bitcount) - 1; value &= mask; ptr += bitoffset >> 3; bitoffset &= 7; value <<= bitoffset; mask <<= bitoffset; mask = ~mask; ptr[0] &= mask; ptr[0] |= value; ptr[1] &= mask >> 8; ptr[1] |= value >> 8; } // routine to read up to 8 bits static inline int read_bits(int bitcount, int bitoffset, const uint8_t * ptr) { int mask = (1 << bitcount) - 1; ptr += bitoffset >> 3; bitoffset &= 7; int value = ptr[0] | (ptr[1] << 8); value >>= bitoffset; value &= mask; return value; } int bitrev8(int p) { p = ((p & 0xF) << 4) | ((p >> 4) & 0xF); p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); return p; } physical_compressed_block symbolic_to_physical(int xdim, int ydim, int zdim, const symbolic_compressed_block * sc) { int i, j; physical_compressed_block res; if (sc->block_mode == -2) { // UNORM16 constant-color block. // This encodes separate constant-color blocks. There is currently // no attempt to coalesce them into larger void-extents. static const uint8_t cbytes[8] = { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; for (i = 0; i < 8; i++) res.data[i] = cbytes[i]; for (i = 0; i < 4; i++) { res.data[2 * i + 8] = sc->constant_color[i] & 0xFF; res.data[2 * i + 9] = (sc->constant_color[i] >> 8) & 0xFF; } return res; } if (sc->block_mode == -1) { // FP16 constant-color block. // This encodes separate constant-color blocks. There is currently // no attempt to coalesce them into larger void-extents. static const uint8_t cbytes[8] = { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; for (i = 0; i < 8; i++) res.data[i] = cbytes[i]; for (i = 0; i < 4; i++) { res.data[2 * i + 8] = sc->constant_color[i] & 0xFF; res.data[2 * i + 9] = (sc->constant_color[i] >> 8) & 0xFF; } return res; } int partition_count = sc->partition_count; // first, compress the weights. They are encoded as an ordinary // integer-sequence, then bit-reversed uint8_t weightbuf[16]; for (i = 0; i < 16; i++) weightbuf[i] = 0; const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim); const decimation_table *const *ixtab2 = bsd->decimation_tables; int weight_count = ixtab2[bsd->block_modes[sc->block_mode].decimation_mode]->num_weights; int weight_quantization_method = bsd->block_modes[sc->block_mode].quantization_mode; int is_dual_plane = bsd->block_modes[sc->block_mode].is_dual_plane; int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; int bits_for_weights = compute_ise_bitcount(real_weight_count, (quantization_method) weight_quantization_method); if (is_dual_plane) { uint8_t weights[64]; for (i = 0; i < weight_count; i++) { weights[2 * i] = sc->plane1_weights[i]; weights[2 * i + 1] = sc->plane2_weights[i]; } encode_ise(weight_quantization_method, real_weight_count, weights, weightbuf, 0); } else { encode_ise(weight_quantization_method, weight_count, sc->plane1_weights, weightbuf, 0); } for (i = 0; i < 16; i++) res.data[i] = bitrev8(weightbuf[15 - i]); write_bits(sc->block_mode, 11, 0, res.data); write_bits(partition_count - 1, 2, 11, res.data); int below_weights_pos = 128 - bits_for_weights; // encode partition index and color endpoint types for blocks with // 2 or more partitions. if (partition_count > 1) { write_bits(sc->partition_index, 6, 13, res.data); write_bits(sc->partition_index >> 6, PARTITION_BITS - 6, 19, res.data); if (sc->color_formats_matched) { write_bits(sc->color_formats[0] << 2, 6, 13 + PARTITION_BITS, res.data); } else { // go through the selected endpoint type classes for each partition // in order to determine the lowest class present. int low_class = 4; for (i = 0; i < partition_count; i++) { int class_of_format = sc->color_formats[i] >> 2; if (class_of_format < low_class) low_class = class_of_format; } if (low_class == 3) low_class = 2; int encoded_type = low_class + 1; int bitpos = 2; for (i = 0; i < partition_count; i++) { int classbit_of_format = (sc->color_formats[i] >> 2) - low_class; encoded_type |= classbit_of_format << bitpos; bitpos++; } for (i = 0; i < partition_count; i++) { int lowbits_of_format = sc->color_formats[i] & 3; encoded_type |= lowbits_of_format << bitpos; bitpos += 2; } int encoded_type_lowpart = encoded_type & 0x3F; int encoded_type_highpart = encoded_type >> 6; int encoded_type_highpart_size = (3 * partition_count) - 4; int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; write_bits(encoded_type_lowpart, 6, 13 + PARTITION_BITS, res.data); write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, res.data); below_weights_pos -= encoded_type_highpart_size; } } else { write_bits(sc->color_formats[0], 4, 13, res.data); } // in dual-plane mode, encode the color component of the second plane of weights if (is_dual_plane) write_bits(sc->plane2_color_component, 2, below_weights_pos - 2, res.data); // finally, encode the color bits // first, get hold of all the color components to encode uint8_t values_to_encode[32]; int valuecount_to_encode = 0; for (i = 0; i < sc->partition_count; i++) { int vals = 2 * (sc->color_formats[i] >> 2) + 2; for (j = 0; j < vals; j++) values_to_encode[j + valuecount_to_encode] = sc->color_values[i][j]; valuecount_to_encode += vals; } // then, encode an ISE based on them. encode_ise(sc->color_quantization_level, valuecount_to_encode, values_to_encode, res.data, (sc->partition_count == 1 ? 17 : 19 + PARTITION_BITS)); return res; } void physical_to_symbolic(int xdim, int ydim, int zdim, physical_compressed_block pb, symbolic_compressed_block * res) { uint8_t bswapped[16]; int i, j; res->error_block = 0; // get hold of the block-size descriptor and the decimation tables. const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim); const decimation_table *const *ixtab2 = bsd->decimation_tables; // extract header fields int block_mode = read_bits(11, 0, pb.data); if ((block_mode & 0x1FF) == 0x1FC) { // void-extent block! // check what format the data has if (block_mode & 0x200) res->block_mode = -1; // floating-point else res->block_mode = -2; // unorm16. res->partition_count = 0; for (i = 0; i < 4; i++) { res->constant_color[i] = pb.data[2 * i + 8] | (pb.data[2 * i + 9] << 8); } // additionally, check that the void-extent if (zdim == 1) { // 2D void-extent int rsvbits = read_bits(2, 10, pb.data); if (rsvbits != 3) res->error_block = 1; int vx_low_s = read_bits(8, 12, pb.data) | (read_bits(5, 12 + 8, pb.data) << 8); int vx_high_s = read_bits(8, 25, pb.data) | (read_bits(5, 25 + 8, pb.data) << 8); int vx_low_t = read_bits(8, 38, pb.data) | (read_bits(5, 38 + 8, pb.data) << 8); int vx_high_t = read_bits(8, 51, pb.data) | (read_bits(5, 51 + 8, pb.data) << 8); int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) res->error_block = 1; } else { // 3D void-extent int vx_low_s = read_bits(9, 10, pb.data); int vx_high_s = read_bits(9, 19, pb.data); int vx_low_t = read_bits(9, 28, pb.data); int vx_high_t = read_bits(9, 37, pb.data); int vx_low_p = read_bits(9, 46, pb.data); int vx_high_p = read_bits(9, 55, pb.data); int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) res->error_block = 1; } return; } if (bsd->block_modes[block_mode].permit_decode == 0) { res->error_block = 1; return; } int weight_count = ixtab2[bsd->block_modes[block_mode].decimation_mode]->num_weights; int weight_quantization_method = bsd->block_modes[block_mode].quantization_mode; int is_dual_plane = bsd->block_modes[block_mode].is_dual_plane; int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; int partition_count = read_bits(2, 11, pb.data) + 1; res->block_mode = block_mode; res->partition_count = partition_count; for (i = 0; i < 16; i++) bswapped[i] = bitrev8(pb.data[15 - i]); int bits_for_weights = compute_ise_bitcount(real_weight_count, (quantization_method) weight_quantization_method); int below_weights_pos = 128 - bits_for_weights; if (is_dual_plane) { uint8_t indices[64]; decode_ise(weight_quantization_method, real_weight_count, bswapped, indices, 0); for (i = 0; i < weight_count; i++) { res->plane1_weights[i] = indices[2 * i]; res->plane2_weights[i] = indices[2 * i + 1]; } } else { decode_ise(weight_quantization_method, weight_count, bswapped, res->plane1_weights, 0); } if (is_dual_plane && partition_count == 4) res->error_block = 1; res->color_formats_matched = 0; // then, determine the format of each endpoint pair int color_formats[4]; int encoded_type_highpart_size = 0; if (partition_count == 1) { color_formats[0] = read_bits(4, 13, pb.data); res->partition_index = 0; } else { encoded_type_highpart_size = (3 * partition_count) - 4; below_weights_pos -= encoded_type_highpart_size; int encoded_type = read_bits(6, 13 + PARTITION_BITS, pb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pb.data) << 6); int baseclass = encoded_type & 0x3; if (baseclass == 0) { for (i = 0; i < partition_count; i++) { color_formats[i] = (encoded_type >> 2) & 0xF; } below_weights_pos += encoded_type_highpart_size; res->color_formats_matched = 1; encoded_type_highpart_size = 0; } else { int bitpos = 2; baseclass--; for (i = 0; i < partition_count; i++) { color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; bitpos++; } for (i = 0; i < partition_count; i++) { color_formats[i] |= (encoded_type >> bitpos) & 3; bitpos += 2; } } res->partition_index = read_bits(6, 13, pb.data) | (read_bits(PARTITION_BITS - 6, 19, pb.data) << 6); } for (i = 0; i < partition_count; i++) res->color_formats[i] = color_formats[i]; // then, determine the number of integers we need to unpack for the endpoint pairs int color_integer_count = 0; for (i = 0; i < partition_count; i++) { int endpoint_class = color_formats[i] >> 2; color_integer_count += (endpoint_class + 1) * 2; } if (color_integer_count > 18) res->error_block = 1; // then, determine the color endpoint format to use for these integers static const int color_bits_arr[5] = { -1, 115 - 4, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS }; int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; if (is_dual_plane) color_bits -= 2; if (color_bits < 0) color_bits = 0; int color_quantization_level = quantization_mode_table[color_integer_count >> 1][color_bits]; res->color_quantization_level = color_quantization_level; if (color_quantization_level < 4) res->error_block = 1; // then unpack the integer-bits uint8_t values_to_decode[32]; decode_ise(color_quantization_level, color_integer_count, pb.data, values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_BITS)); // and distribute them over the endpoint types int valuecount_to_decode = 0; for (i = 0; i < partition_count; i++) { int vals = 2 * (color_formats[i] >> 2) + 2; for (j = 0; j < vals; j++) res->color_values[i][j] = values_to_decode[j + valuecount_to_decode]; valuecount_to_decode += vals; } // get hold of color component for second-plane in the case of dual plane of weights. if (is_dual_plane) res->plane2_color_component = read_bits(2, below_weights_pos - 2, pb.data); }