/* * Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors * https://github.com/jhasse/poly2tri * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Include guard #ifndef SHAPES_H #define SHAPES_H #include #include #include #include namespace p2t { struct Edge; struct Point { double x, y; /// Default constructor does nothing (for performance). Point() { x = 0.0; y = 0.0; } /// The edges this point constitutes an upper ending point std::vector edge_list; /// Construct using coordinates. Point(double x, double y) : x(x), y(y) {} /// Set this point to all zeros. void set_zero() { x = 0.0; y = 0.0; } /// Set this point to some specified coordinates. void set(double x_, double y_) { x = x_; y = y_; } /// Negate this point. Point operator -() const { Point v; v.set(-x, -y); return v; } /// Add a point to this point. void operator +=(const Point& v) { x += v.x; y += v.y; } /// Subtract a point from this point. void operator -=(const Point& v) { x -= v.x; y -= v.y; } /// Multiply this point by a scalar. void operator *=(double a) { x *= a; y *= a; } /// Get the length of this point (the norm). double Length() const { return sqrt(x * x + y * y); } /// Convert this point into a unit point. Returns the Length. double Normalize() { const double len = Length(); x /= len; y /= len; return len; } }; std::ostream& operator<<(std::ostream&, const Point&); // Represents a simple polygon's edge struct Edge { Point* p, *q; /// Constructor Edge(Point& p1, Point& p2) : p(&p1), q(&p2) { if (p1.y > p2.y) { q = &p1; p = &p2; } else if (p1.y == p2.y) { if (p1.x > p2.x) { q = &p1; p = &p2; } else if (p1.x == p2.x) { // Repeat points throw std::runtime_error("Edge::Edge: p1 == p2"); } } q->edge_list.push_back(this); } }; // Triangle-based data structures are know to have better performance than quad-edge structures // See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator" // "Triangulations in CGAL" class Triangle { public: /// Constructor Triangle(Point& a, Point& b, Point& c); /// Flags to determine if an edge is a Constrained edge bool constrained_edge[3]; /// Flags to determine if an edge is a Delauney edge bool delaunay_edge[3]; Point* GetPoint(int index); Point* PointCW(const Point& point); Point* PointCCW(const Point& point); Point* OppositePoint(Triangle& t, const Point& p); Triangle* GetNeighbor(int index); void MarkNeighbor(Point* p1, Point* p2, Triangle* t); void MarkNeighbor(Triangle& t); void MarkConstrainedEdge(int index); void MarkConstrainedEdge(Edge& edge); void MarkConstrainedEdge(Point* p, Point* q); int Index(const Point* p); int EdgeIndex(const Point* p1, const Point* p2); Triangle* NeighborCW(const Point& point); Triangle* NeighborCCW(const Point& point); bool GetConstrainedEdgeCCW(const Point& p); bool GetConstrainedEdgeCW(const Point& p); void SetConstrainedEdgeCCW(const Point& p, bool ce); void SetConstrainedEdgeCW(const Point& p, bool ce); bool GetDelunayEdgeCCW(const Point& p); bool GetDelunayEdgeCW(const Point& p); void SetDelunayEdgeCCW(const Point& p, bool e); void SetDelunayEdgeCW(const Point& p, bool e); bool Contains(const Point* p); bool Contains(const Edge& e); bool Contains(const Point* p, const Point* q); void Legalize(Point& point); void Legalize(Point& opoint, Point& npoint); /** * Clears all references to all other triangles and points */ void Clear(); void ClearNeighbor(const Triangle *triangle); void ClearNeighbors(); void ClearDelunayEdges(); inline bool IsInterior(); inline void IsInterior(bool b); Triangle& NeighborAcross(const Point& opoint); void DebugPrint(); bool CircumcicleContains(const Point&) const; private: bool IsCounterClockwise() const; /// Triangle points Point* points_[3]; /// Neighbor list Triangle* neighbors_[3]; /// Has this triangle been marked as an interior triangle? bool interior_; }; inline bool cmp(const Point* a, const Point* b) { if (a->y < b->y) { return true; } else if (a->y == b->y) { // Make sure q is point with greater x value if (a->x < b->x) { return true; } } return false; } /// Add two points_ component-wise. inline Point operator +(const Point& a, const Point& b) { return Point(a.x + b.x, a.y + b.y); } /// Subtract two points_ component-wise. inline Point operator -(const Point& a, const Point& b) { return Point(a.x - b.x, a.y - b.y); } /// Multiply point by scalar inline Point operator *(double s, const Point& a) { return Point(s * a.x, s * a.y); } inline bool operator ==(const Point& a, const Point& b) { return a.x == b.x && a.y == b.y; } inline bool operator !=(const Point& a, const Point& b) { return !(a.x == b.x) && !(a.y == b.y); } /// Peform the dot product on two vectors. inline double Dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; } /// Perform the cross product on two vectors. In 2D this produces a scalar. inline double Cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; } /// Perform the cross product on a point and a scalar. In 2D this produces /// a point. inline Point Cross(const Point& a, double s) { return Point(s * a.y, -s * a.x); } /// Perform the cross product on a scalar and a point. In 2D this produces /// a point. inline Point Cross(double s, const Point& a) { return Point(-s * a.y, s * a.x); } inline Point* Triangle::GetPoint(int index) { return points_[index]; } inline Triangle* Triangle::GetNeighbor(int index) { return neighbors_[index]; } inline bool Triangle::Contains(const Point* p) { return p == points_[0] || p == points_[1] || p == points_[2]; } inline bool Triangle::Contains(const Edge& e) { return Contains(e.p) && Contains(e.q); } inline bool Triangle::Contains(const Point* p, const Point* q) { return Contains(p) && Contains(q); } inline bool Triangle::IsInterior() { return interior_; } inline void Triangle::IsInterior(bool b) { interior_ = b; } /// Is this set a valid delaunay triangulation? bool IsDelaunay(const std::vector&); } #endif