/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "chipmunk/chipmunk.h" #include "ChipmunkDemo.h" static cpBody* planetBody; static cpFloat gravityStrength = 5.0e6f; static void update(cpSpace* space, double dt) { cpSpaceStep(space, dt); } static void planetGravityVelocityFunc(cpBody* body, cpVect gravity, cpFloat damping, cpFloat dt) { // Gravitational acceleration is proportional to the inverse square of // distance, and directed toward the origin. The central planet is assumed // to be massive enough that it affects the satellites but not vice versa. cpVect p = cpBodyGetPosition(body); cpFloat sqdist = cpvlengthsq(p); cpVect g = cpvmult(p, -gravityStrength / (sqdist * cpfsqrt(sqdist))); cpBodyUpdateVelocity(body, g, damping, dt); } static cpVect rand_pos(cpFloat radius) { cpVect v; do { v = cpv(frand() * (640 - 2 * radius) - (320 - radius), frand() * (480 - 2 * radius) - (240 - radius)); } while (cpvlength(v) < 85.0f); return v; } static void add_box(cpSpace* space) { const cpFloat size = 10.0f; const cpFloat mass = 1.0f; cpVect verts[] = { cpv(-size, -size), cpv(-size, size), cpv(size, size), cpv(size, -size), }; cpFloat radius = cpvlength(cpv(size, size)); cpVect pos = rand_pos(radius); cpBody* body = cpSpaceAddBody(space, cpBodyNew(mass, cpMomentForPoly(mass, 4, verts, cpvzero, 0.0f))); cpBodySetVelocityUpdateFunc(body, planetGravityVelocityFunc); cpBodySetPosition(body, pos); // Set the box's velocity to put it into a circular orbit from its // starting position. cpFloat r = cpvlength(pos); cpFloat v = cpfsqrt(gravityStrength / r) / r; cpBodySetVelocity(body, cpvmult(cpvperp(pos), v)); // Set the box's angular velocity to match its orbital period and // align its initial angle with its position. cpBodySetAngularVelocity(body, v); cpBodySetAngle(body, cpfatan2(pos.y, pos.x)); cpShape* shape = cpSpaceAddShape(space, cpPolyShapeNew(body, 4, verts, cpTransformIdentity, 0.0)); cpShapeSetElasticity(shape, 0.0f); cpShapeSetFriction(shape, 0.7f); } static cpSpace* init(void) { // Create a rouge body to control the planet manually. cpSpace* space = cpSpaceNew(); cpSpaceSetIterations(space, 20); planetBody = cpSpaceAddBody(space, cpBodyNewKinematic()); cpBodySetAngularVelocity(planetBody, 0.2f); for (int i = 0; i < 30; i++) { add_box(space); } cpShape* shape = cpSpaceAddShape(space, cpCircleShapeNew(planetBody, 70.0f, cpvzero)); cpShapeSetElasticity(shape, 1.0f); cpShapeSetFriction(shape, 1.0f); cpShapeSetFilter(shape, NOT_GRABBABLE_FILTER); return space; } static void destroy(cpSpace* space) { ChipmunkDemoFreeSpaceChildren(space); cpSpaceFree(space); } ChipmunkDemo Planet = { "Planet", 1.0 / 60.0, init, update, ChipmunkDemoDefaultDrawImpl, destroy, };