/// \file // Range v3 library // // Copyright Casey Carter 2016 // // Use, modification and distribution is subject to the // Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // Project home: https://github.com/ericniebler/range-v3 // /* * Random-Number Utilities (randutil) * Addresses common issues with C++11 random number generation. * Makes good seeding easier, and makes using RNGs easy while retaining * all the power. * * The MIT License (MIT) * * Copyright (c) 2015 Melissa E. O'Neill * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef RANGES_V3_UTILITY_RANDOM_HPP #define RANGES_V3_UTILITY_RANDOM_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !RANGES_CXX_THREAD_LOCAL #include #endif #include RANGES_DIAGNOSTIC_PUSH RANGES_DIAGNOSTIC_IGNORE_CXX17_COMPAT namespace ranges { /// \addtogroup group-numerics /// @{ // clang-format off /// \concept uniform_random_bit_generator_ /// \brief The \c uniform_random_bit_generator_ concept template CPP_requires(uniform_random_bit_generator_, requires() // ( Gen::min(), Gen::max() )); /// \concept uniform_random_bit_generator_ /// \brief The \c uniform_random_bit_generator_ concept template(typename Gen)( concept (uniform_random_bit_generator_)(Gen), unsigned_integral> AND same_as, decltype(Gen::min())> AND same_as, decltype(Gen::max())>); /// \concept uniform_random_bit_generator /// \brief The \c uniform_random_bit_generator concept template CPP_concept uniform_random_bit_generator = invocable && CPP_requires_ref(ranges::uniform_random_bit_generator_, Gen) && CPP_concept_ref(ranges::uniform_random_bit_generator_, Gen); // clang-format on /// @} /// \cond namespace detail { namespace randutils { inline std::array get_entropy() { std::array seeds; // Hopefully high-quality entropy from random_device. #if defined(__GLIBCXX__) && defined(RANGES_WORKAROUND_VALGRIND_RDRAND) std::random_device rd{"/dev/urandom"}; #else std::random_device rd; #endif std::uniform_int_distribution dist{}; ranges::generate(seeds, [&] { return dist(rd); }); return seeds; } template(typename I)( requires unsigned_integral) constexpr I fast_exp(I x, I power, I result = I{1}) { return power == I{0} ? result : randutils::fast_exp( x * x, power >> 1, result * (power & I{1} ? x : 1)); } ////////////////////////////////////////////////////////////////////////////// // // seed_seq_fe // ////////////////////////////////////////////////////////////////////////////// /* * seed_seq_fe implements a fixed-entropy seed sequence; it conforms to all * the requirements of a Seed Sequence concept. * * seed_seq_fe implements a seed sequence which seeds based on a store of * N * 32 bits of entropy. Typically, it would be initialized with N or more * integers. * * seed_seq_fe128 and seed_seq_fe256 are provided as convenience typedefs for * 128- and 256-bit entropy stores respectively. These variants outperform * std::seed_seq, while being better mixing the bits it is provided as * entropy. In almost all common use cases, they serve as better drop-in * replacements for seed_seq. * * Technical details * * Assuming it constructed with M seed integers as input, it exhibits the * following properties * * * Diffusion/Avalanche: A single-bit change in any of the M inputs has a * 50% chance of flipping every bit in the bitstream produced by generate. * Initializing the N-word entropy store with M words requires O(N * M) * time precisely because of the avalanche requirements. Once constructed, * calls to generate are linear in the number of words generated. * * * Bias freedom/Bijection: If M == N, the state of the entropy store is a * bijection from the M inputs (i.e., no states occur twice, none are * omitted). If M > N the number of times each state can occur is the same * (each state occurs 2**(32*(M-N)) times, where ** is the power function). * If M < N, some states cannot occur (bias) but no state occurs more * than once (it's impossible to avoid bias if M < N; ideally N should not * be chosen so that it is more than M). * * Likewise, the generate function has similar properties (with the entropy * store as the input data). If more outputs are requested than there is * entropy, some outputs cannot occur. For example, the Mersenne Twister * will request 624 outputs, to initialize its 19937-bit state, which is * much larger than a 128-bit or 256-bit entropy pool. But in practice, * limiting the Mersenne Twister to 2**128 possible initializations gives * us enough initializations to give a unique initialization to trillions * of computers for billions of years. If you really have 624 words of * *real* high-quality entropy you want to use, you probably don't need * an entropy mixer like this class at all. But if you *really* want to, * nothing is stopping you from creating a randutils::seed_seq_fe<624>. * * * As a consequence of the above properties, if all parts of the provided * seed data are kept constant except one, and the remaining part is varied * through K different states, K different output sequences will be * produced. * * * Also, because the amount of entropy stored is fixed, this class never * performs dynamic allocation and is free of the possibility of generating * an exception. * * Ideas used to implement this code include hashing, a simple PCG generator * based on an MCG base with an XorShift output function and permutation * functions on tuples. * * More detail at * http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html */ template struct seed_seq_fe { public: CPP_assert(unsigned_integral); typedef IntRep result_type; private: static constexpr std::size_t mix_rounds = 1 + (count <= 2); static constexpr std::uint32_t INIT_A = 0x43b0d7e5; static constexpr std::uint32_t MULT_A = 0x931e8875; static constexpr std::uint32_t INIT_B = 0x8b51f9dd; static constexpr std::uint32_t MULT_B = 0x58f38ded; static constexpr std::uint32_t MIX_MULT_L = 0xca01f9dd; static constexpr std::uint32_t MIX_MULT_R = 0x4973f715; static constexpr std::uint32_t XSHIFT = sizeof(IntRep) * 8 / 2; std::array mixer_; template(typename I, typename S)( requires input_iterator AND sentinel_for AND convertible_to, IntRep>) void mix_entropy(I first, S last) { auto hash_const = INIT_A; auto hash = [&](IntRep value) RANGES_INTENDED_MODULAR_ARITHMETIC { value ^= hash_const; hash_const *= MULT_A; value *= hash_const; value ^= value >> XSHIFT; return value; }; auto mix = [](IntRep x, IntRep y) RANGES_INTENDED_MODULAR_ARITHMETIC { IntRep result = MIX_MULT_L * x - MIX_MULT_R * y; result ^= result >> XSHIFT; return result; }; for(auto & elem : mixer_) { if(first != last) { elem = hash(static_cast(*first)); ++first; } else elem = hash(IntRep{0}); } for(auto & src : mixer_) for(auto & dest : mixer_) if(&src != &dest) dest = mix(dest, hash(src)); for(; first != last; ++first) for(auto & dest : mixer_) dest = mix(dest, hash(static_cast(*first))); } public: seed_seq_fe(const seed_seq_fe &) = delete; void operator=(const seed_seq_fe &) = delete; template(typename T)( requires convertible_to) seed_seq_fe(std::initializer_list init) { seed(init.begin(), init.end()); } template(typename I, typename S)( requires input_iterator AND sentinel_for AND convertible_to, IntRep>) seed_seq_fe(I first, S last) { seed(first, last); } // generating functions template(typename I, typename S)( requires random_access_iterator AND sentinel_for) RANGES_INTENDED_MODULAR_ARITHMETIC // void generate(I first, S const last) const { auto src_begin = mixer_.begin(); auto src_end = mixer_.end(); auto src = src_begin; auto hash_const = INIT_B; for(; first != last; ++first) { auto dataval = *src; if(++src == src_end) src = src_begin; dataval ^= hash_const; hash_const *= MULT_B; dataval *= hash_const; dataval ^= dataval >> XSHIFT; *first = dataval; } } constexpr std::size_t size() const { return count; } template(typename O)( requires weakly_incrementable AND indirectly_copyable) RANGES_INTENDED_MODULAR_ARITHMETIC void param(O dest) const { constexpr IntRep INV_A = randutils::fast_exp(MULT_A, IntRep(-1)); constexpr IntRep MIX_INV_L = randutils::fast_exp(MIX_MULT_L, IntRep(-1)); auto mixer_copy = mixer_; for(std::size_t round = 0; round < mix_rounds; ++round) { // Advance to the final value. We'll backtrack from that. auto hash_const = INIT_A * randutils::fast_exp(MULT_A, IntRep(count * count)); for(auto src = mixer_copy.rbegin(); src != mixer_copy.rend(); ++src) for(auto rdest = mixer_copy.rbegin(); rdest != mixer_copy.rend(); ++rdest) if(src != rdest) { IntRep revhashed = *src; auto mult_const = hash_const; hash_const *= INV_A; revhashed ^= hash_const; revhashed *= mult_const; revhashed ^= revhashed >> XSHIFT; IntRep unmixed = *rdest; unmixed ^= unmixed >> XSHIFT; unmixed += MIX_MULT_R * revhashed; unmixed *= MIX_INV_L; *rdest = unmixed; } for(auto i = mixer_copy.rbegin(); i != mixer_copy.rend(); ++i) { IntRep unhashed = *i; unhashed ^= unhashed >> XSHIFT; unhashed *= randutils::fast_exp(hash_const, IntRep(-1)); hash_const *= INV_A; unhashed ^= hash_const; *i = unhashed; } } ranges::copy(mixer_copy, dest); } template(typename I, typename S)( requires input_iterator AND sentinel_for AND convertible_to, IntRep>) void seed(I first, S last) { mix_entropy(first, last); // For very small sizes, we do some additional mixing. For normal // sizes, this loop never performs any iterations. for(std::size_t i = 1; i < mix_rounds; ++i) stir(); } seed_seq_fe & stir() { mix_entropy(mixer_.begin(), mixer_.end()); return *this; } }; using seed_seq_fe128 = seed_seq_fe<4, std::uint32_t>; using seed_seq_fe256 = seed_seq_fe<8, std::uint32_t>; ////////////////////////////////////////////////////////////////////////////// // // auto_seeded // ////////////////////////////////////////////////////////////////////////////// /* * randutils::auto_seeded * * Extends a seed sequence class with a nondeterministic default * constructor. Uses a variety of local sources of entropy to portably * initialize any seed sequence to a good default state. * * In normal use, it's accessed via one of the following type aliases, which * use seed_seq_fe128 and seed_seq_fe256 above. * * randutils::auto_seed_128 * randutils::auto_seed_256 * * It's discussed in detail at * http://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html * and its motivation (why you can't just use std::random_device) here * http://www.pcg-random.org/posts/cpps-random_device.html */ template struct auto_seeded : public SeedSeq { auto_seeded() : auto_seeded(randutils::get_entropy()) {} template auto_seeded(std::array const & seeds) : SeedSeq(seeds.begin(), seeds.end()) {} using SeedSeq::SeedSeq; const SeedSeq & base() const { return *this; } SeedSeq & base() { return *this; } }; using auto_seed_128 = auto_seeded; using auto_seed_256 = auto_seeded; } // namespace randutils using default_URNG = meta::if_c<(sizeof(void *) >= sizeof(long long)), std::mt19937_64, std::mt19937>; #if !RANGES_CXX_THREAD_LOCAL template class sync_URNG : private URNG { mutable std::mutex mtx_; public: using URNG::URNG; sync_URNG() = default; using typename URNG::result_type; result_type operator()() { std::lock_guard guard{mtx_}; return static_cast(*this)(); } using URNG::max; using URNG::min; }; using default_random_engine = sync_URNG; #else using default_random_engine = default_URNG; #endif template default_random_engine & get_random_engine() { using Seeder = meta::if_c<(sizeof(default_URNG) > 16), randutils::auto_seed_256, randutils::auto_seed_128>; #if RANGES_CXX_THREAD_LOCAL >= RANGES_CXX_THREAD_LOCAL_11 static thread_local default_random_engine engine{Seeder{}.base()}; #elif RANGES_CXX_THREAD_LOCAL static __thread bool initialized = false; static __thread meta::_t> storage; if(!initialized) { ::new(static_cast(&storage)) default_random_engine{Seeder{}.base()}; initialized = true; } auto & engine = reinterpret_cast(storage); #else static default_random_engine engine{Seeder{}.base()}; #endif // RANGES_CXX_THREAD_LOCAL return engine; } } // namespace detail /// \endcond } // namespace ranges RANGES_DIAGNOSTIC_POP #include #endif