/**************************************************************************** Copyright (c) 2019-present Axmol Engine contributors (see AUTHORS.md). https://axmol.dev/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #ifndef __FAST_RNG_H__ #define __FAST_RNG_H__ #include "base/Macros.h" #include "math/MathBase.h" #include #include NS_AX_MATH_BEGIN /** A fast more effective seeded random number generator struct, uses xoshiro128**. * It uses a simple algorithm to improve the speed of generating random numbers with a decent quality, * Use this if you're planning to generate large amounts of random numbers in a single frame. * * @since axmol-1.0.0b8 */ struct FastRNG { private: uint32_t s[4]; // SplitMix64 implementation, doesn't modify any state for this instance // but it is used to seed xoshiro128** state static inline uint64_t nextSeed(uint64_t& state) { uint64_t z = (state += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return z ^ (z >> 31); } // returns a copy of x rotated k bits to the left static inline uint32_t rotL(const uint32_t x, int k) { return (x << k) | (x >> (32 - k)); } // generates a random integer from 0 to max exclusive that is uniformly distributed using fastrange algorithm uint32_t nextMax(uint32_t max) { uint64_t multiresult = static_cast(next()) * max; uint32_t leftover = static_cast(multiresult); if (leftover < max) { uint32_t threshold = (0 - max) % max; while (leftover < threshold) { multiresult = static_cast(next()) * max; leftover = static_cast(multiresult); } } return multiresult >> 32; } public: FastRNG() { seed(static_cast(rand()) << 32 | rand()); } FastRNG(uint64_t _seed) { seed(_seed); } // there is no need to seed this instance of FastRNG // because it's already been seeded with rand() in constructor // you can override the seed by giving your own 64-bit seed void seed(uint64_t seed) { uint64_t state = seed; uint64_t states[2]; memset(states, 0, 16); states[0] = FastRNG::nextSeed(state); states[1] = FastRNG::nextSeed(state); memcpy(s, states, 16); } // steps once into the state, returns a random from 0 to UINT32_MAX uint32_t next() { const uint32_t result = rotL(s[1] * 5, 7) * 9; const uint32_t t = s[1] << 9; s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3]; s[2] ^= t; s[3] = rotL(s[3], 11); return result; } // generates a random real that ranges from 0.0 to 1.0 template T nextReal() { if constexpr (std::is_same::value) return static_cast(next() >> 8) * 0x1.0p-24f; else if constexpr (std::is_same::value) return static_cast((static_cast(next()) << 32 | next()) >> 11) * 0x1.0p-53; else AXASSERT(false, "datatype not implemented."); } // generates a random real that ranges from min to max template T nextReal(T min, T max) { return static_cast(min + nextReal() * (max - min)); } // generates a random integer that ranges from min inclusive to max exclusive [min, max) and is uniformly distributed using fastrange algorithm template T nextInt(T min, T max) { return min + static_cast(nextMax(static_cast(max - min))); } // wrapper for nextInt(min, max) int32_t range(int32_t min, int32_t max) { return nextInt(min, max); } // wrapper for nextInt(0, max) int32_t max(int32_t max = INT32_MAX) { return nextInt(0, max); } // wrapper for nextInt(min, max) uint32_t rangeu(uint32_t min, uint32_t max) { return nextInt(min, max); } // wrapper for nextInt(0, max) uint32_t maxu(uint32_t max = UINT_MAX) { return nextInt(0, max); } // wrapper for nextReal(min, max) float rangef(float min = -1.0F, float max = 1.0F) { return nextReal(min, max); } // wrapper for nextReal(0, max) float maxf(float max) { return nextReal(0, max); } // wrapper for nextReal(min, max) double ranged(double min = -1.0F, double max = 1.0F) { return nextReal(min, max); } // wrapper for nextReal(0, max) double maxd(double max) { return nextReal(0, max); } // wrapper for nextReal() float float01() { return nextReal(); } // wrapper for nextReal() double double01() { return nextReal(); } // wrapper for next() & 1, true or false based on LSB bool bool01() { return static_cast(next() & 1); } }; NS_AX_MATH_END #endif // __FAST_RNG_H__