/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2009 Leonardo Kasperavičius Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. https://axmol.dev/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "2d/ParticleSystemQuad.h" #include #include // offsetof #include "base/Types.h" #include "2d/SpriteFrame.h" #include "2d/ParticleBatchNode.h" #include "renderer/TextureAtlas.h" #include "renderer/Renderer.h" #include "base/Director.h" #include "base/EventType.h" #include "base/Configuration.h" #include "base/EventListenerCustom.h" #include "base/EventDispatcher.h" #include "base/UTF8.h" #include "renderer/Shaders.h" #include "renderer/backend/ProgramState.h" #include "2d/TweenFunction.h" NS_AX_BEGIN ParticleSystemQuad::ParticleSystemQuad() { auto& pipelinePS = _quadCommand.getPipelineDescriptor().programState; auto* program = backend::Program::getBuiltinProgram(backend::ProgramType::POSITION_TEXTURE_COLOR); //!!! support etc1 with alpha? pipelinePS = (new backend::ProgramState(program)); _mvpMatrixLocaiton = pipelinePS->getUniformLocation("u_MVPMatrix"); _textureLocation = pipelinePS->getUniformLocation("u_tex0"); } ParticleSystemQuad::~ParticleSystemQuad() { if (nullptr == _batchNode) { AX_SAFE_FREE(_quads); AX_SAFE_FREE(_indices); } AX_SAFE_RELEASE_NULL(_quadCommand.getPipelineDescriptor().programState); } // implementation ParticleSystemQuad ParticleSystemQuad* ParticleSystemQuad::create(std::string_view filename) { ParticleSystemQuad* ret = new ParticleSystemQuad(); if (ret->initWithFile(filename)) { ret->autorelease(); return ret; } AX_SAFE_DELETE(ret); return ret; } ParticleSystemQuad* ParticleSystemQuad::createWithTotalParticles(int numberOfParticles) { AXASSERT(numberOfParticles <= 10000, "Adding more than 10000 particles will crash the renderer, the mesh generated has an index format of " "U_SHORT (uint16_t)"); ParticleSystemQuad* ret = new ParticleSystemQuad(); if (ret->initWithTotalParticles(numberOfParticles)) { ret->autorelease(); return ret; } AX_SAFE_DELETE(ret); return ret; } ParticleSystemQuad* ParticleSystemQuad::create(ValueMap& dictionary) { ParticleSystemQuad* ret = new ParticleSystemQuad(); if (ret->initWithDictionary(dictionary)) { ret->autorelease(); return ret; } AX_SAFE_DELETE(ret); return ret; } // implementation ParticleSystemQuad // overriding the init method bool ParticleSystemQuad::initWithTotalParticles(int numberOfParticles) { // base initialization if (ParticleSystem::initWithTotalParticles(numberOfParticles)) { // allocating data space if (!this->allocMemory()) { this->release(); return false; } initIndices(); // setupVBO(); #if AX_ENABLE_CACHE_TEXTURE_DATA // Need to listen the event only when not use batchnode, because it will use VBO auto listener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, AX_CALLBACK_1(ParticleSystemQuad::listenRendererRecreated, this)); _eventDispatcher->addEventListenerWithSceneGraphPriority(listener, this); #endif return true; } return false; } // pointRect should be in Texture coordinates, not pixel coordinates void ParticleSystemQuad::initTexCoordsWithRect(const Rect& pointRect) { // convert to Tex coords Rect rect = Rect(pointRect.origin.x * AX_CONTENT_SCALE_FACTOR(), pointRect.origin.y * AX_CONTENT_SCALE_FACTOR(), pointRect.size.width * AX_CONTENT_SCALE_FACTOR(), pointRect.size.height * AX_CONTENT_SCALE_FACTOR()); float wide = (float)pointRect.size.width; float high = (float)pointRect.size.height; if (_texture) { wide = (float)_texture->getPixelsWide(); high = (float)_texture->getPixelsHigh(); } #if AX_FIX_ARTIFACTS_BY_STRECHING_TEXEL float left = (rect.origin.x * 2 + 1) / (wide * 2); float bottom = (rect.origin.y * 2 + 1) / (high * 2); float right = left + (rect.size.width * 2 - 2) / (wide * 2); float top = bottom + (rect.size.height * 2 - 2) / (high * 2); #else float left = rect.origin.x / wide; float bottom = rect.origin.y / high; float right = left + rect.size.width / wide; float top = bottom + rect.size.height / high; #endif // ! AX_FIX_ARTIFACTS_BY_STRECHING_TEXEL // Important. Texture in cocos2d are inverted, so the Y component should be inverted std::swap(top, bottom); V3F_C4B_T2F_Quad* quads = nullptr; unsigned int start = 0, end = 0; if (_batchNode) { quads = _batchNode->getTextureAtlas()->getQuads(); start = _atlasIndex; end = _atlasIndex + _totalParticles; } else { quads = _quads; start = 0; end = _totalParticles; } for (unsigned int i = start; i < end; i++) { // bottom-left vertex: quads[i].bl.texCoords.u = left; quads[i].bl.texCoords.v = bottom; // bottom-right vertex: quads[i].br.texCoords.u = right; quads[i].br.texCoords.v = bottom; // top-left vertex: quads[i].tl.texCoords.u = left; quads[i].tl.texCoords.v = top; // top-right vertex: quads[i].tr.texCoords.u = right; quads[i].tr.texCoords.v = top; } } void ParticleSystemQuad::updateTexCoords() { if (_texture) { const Vec2& s = _texture->getContentSize(); initTexCoordsWithRect(Rect(0, 0, s.width, s.height)); } } void ParticleSystemQuad::setTextureWithRect(Texture2D* texture, const Rect& rect) { // Only update the texture if is different from the current one if (!_texture || texture->getBackendTexture() != _texture->getBackendTexture()) { ParticleSystem::setTexture(texture); auto programState = _quadCommand.getPipelineDescriptor().programState; programState->setTexture(_texture->getBackendTexture()); } this->initTexCoordsWithRect(rect); } void ParticleSystemQuad::setTexture(Texture2D* texture) { const Vec2& s = texture->getContentSize(); this->setTextureWithRect(texture, Rect(0, 0, s.width, s.height)); } void ParticleSystemQuad::setDisplayFrame(SpriteFrame* spriteFrame) { AXASSERT(spriteFrame->getOffsetInPixels().isZero(), "QuadParticle only supports SpriteFrames with no offsets"); this->setTextureWithRect(spriteFrame->getTexture(), spriteFrame->getRect()); } void ParticleSystemQuad::initIndices() { for (int i = 0; i < _totalParticles; ++i) { const unsigned int i6 = i * 6; const unsigned int i4 = i * 4; _indices[i6 + 0] = (unsigned short)i4 + 0; _indices[i6 + 1] = (unsigned short)i4 + 1; _indices[i6 + 2] = (unsigned short)i4 + 2; _indices[i6 + 5] = (unsigned short)i4 + 1; _indices[i6 + 4] = (unsigned short)i4 + 2; _indices[i6 + 3] = (unsigned short)i4 + 3; } } inline void updatePosWithParticle(V3F_C4B_T2F_Quad* quad, const Vec2& newPosition, float size, float scaleInSize, float rotation, float staticRotation) { // vertices float size_2 = size / 2; float x1 = -size_2 * scaleInSize; float y1 = -size_2 * scaleInSize; float x2 = size_2 * scaleInSize; float y2 = size_2 * scaleInSize; float x = newPosition.x; float y = newPosition.y; float r = (float)-AX_DEGREES_TO_RADIANS(rotation + staticRotation); float cr = cosf(r); float sr = sinf(r); float ax = x1 * cr - y1 * sr + x; float ay = x1 * sr + y1 * cr + y; float bx = x2 * cr - y1 * sr + x; float by = x2 * sr + y1 * cr + y; float cx = x2 * cr - y2 * sr + x; float cy = x2 * sr + y2 * cr + y; float dx = x1 * cr - y2 * sr + x; float dy = x1 * sr + y2 * cr + y; // bottom-left quad->bl.vertices.x = ax; quad->bl.vertices.y = ay; // bottom-right vertex: quad->br.vertices.x = bx; quad->br.vertices.y = by; // top-left vertex: quad->tl.vertices.x = dx; quad->tl.vertices.y = dy; // top-right vertex: quad->tr.vertices.x = cx; quad->tr.vertices.y = cy; } void ParticleSystemQuad::updateParticleQuads() { if (_particleCount <= 0) { return; } Vec2 currentPosition; if (_positionType == PositionType::FREE) { currentPosition = this->convertToWorldSpace(Vec2::ZERO); } else if (_positionType == PositionType::RELATIVE) { currentPosition = _position; } V3F_C4B_T2F_Quad* startQuad; Vec2 pos = Vec2::ZERO; if (_batchNode) { V3F_C4B_T2F_Quad* batchQuads = _batchNode->getTextureAtlas()->getQuads(); startQuad = &(batchQuads[_atlasIndex]); pos = _position; } else { startQuad = &(_quads[0]); } if (_positionType == PositionType::FREE) { Vec3 p1(currentPosition.x, currentPosition.y, 0); Mat4 worldToNodeTM = getWorldToNodeTransform(); worldToNodeTM.transformPoint(&p1); Vec3 p2; Vec2 newPos; float* startX = _particleData.startPosX; float* startY = _particleData.startPosY; float* x = _particleData.posx; float* y = _particleData.posy; float* s = _particleData.size; float* r = _particleData.rotation; float* sr = _particleData.staticRotation; float* sid = _particleData.scaleInDelta; float* sil = _particleData.scaleInLength; V3F_C4B_T2F_Quad* quadStart = startQuad; if (_isScaleInAllocated) { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr, ++sid, ++sil) { p2.set(*startX, *startY, 0); worldToNodeTM.transformPoint(&p2); newPos.set(*x, *y); p2 = p1 - p2; newPos.x -= p2.x - pos.x; newPos.y -= p2.y - pos.y; updatePosWithParticle(quadStart, newPos, *s, tweenfunc::expoEaseOut(*sid / *sil), *r, *sr); } } else { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr) { p2.set(*startX, *startY, 0); worldToNodeTM.transformPoint(&p2); newPos.set(*x, *y); p2 = p1 - p2; newPos.x -= p2.x - pos.x; newPos.y -= p2.y - pos.y; updatePosWithParticle(quadStart, newPos, *s, 1.0F, *r, *sr); } } } else if (_positionType == PositionType::RELATIVE) { Vec2 newPos; float* startX = _particleData.startPosX; float* startY = _particleData.startPosY; float* x = _particleData.posx; float* y = _particleData.posy; float* s = _particleData.size; float* r = _particleData.rotation; float* sr = _particleData.staticRotation; float* sid = _particleData.scaleInDelta; float* sil = _particleData.scaleInLength; V3F_C4B_T2F_Quad* quadStart = startQuad; if (_isScaleInAllocated) { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr, ++sid, ++sil) { newPos.set(*x, *y); newPos.x = *x - (currentPosition.x - *startX); newPos.y = *y - (currentPosition.y - *startY); newPos += pos; updatePosWithParticle(quadStart, newPos, *s, tweenfunc::expoEaseOut(*sid / *sil), *r, *sr); } } else { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr) { newPos.set(*x, *y); newPos.x = *x - (currentPosition.x - *startX); newPos.y = *y - (currentPosition.y - *startY); newPos += pos; updatePosWithParticle(quadStart, newPos, *s, 1.0F, *r, *sr); } } } else { Vec2 newPos; float* startX = _particleData.startPosX; float* startY = _particleData.startPosY; float* x = _particleData.posx; float* y = _particleData.posy; float* s = _particleData.size; float* r = _particleData.rotation; float* sr = _particleData.staticRotation; float* sid = _particleData.scaleInDelta; float* sil = _particleData.scaleInLength; V3F_C4B_T2F_Quad* quadStart = startQuad; if (_isScaleInAllocated) { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr, ++sid, ++sil) { newPos.set(*x + pos.x, *y + pos.y); updatePosWithParticle(quadStart, newPos, *s, tweenfunc::expoEaseOut(*sid / *sil), *r, *sr); } } else { for (int i = 0; i < _particleCount; ++i, ++startX, ++startY, ++x, ++y, ++quadStart, ++s, ++r, ++sr) { newPos.set(*x + pos.x, *y + pos.y); updatePosWithParticle(quadStart, newPos, *s, 1.0F, *r, *sr); } } } V3F_C4B_T2F_Quad* quad = startQuad; float* r = _particleData.colorR; float* g = _particleData.colorG; float* b = _particleData.colorB; float* a = _particleData.colorA; if (_isOpacityFadeInAllocated) { float* fadeDt = _particleData.opacityFadeInDelta; float* fadeLn = _particleData.opacityFadeInLength; // HSV calculation is expensive, so we should skip it if it's not enabled. if (_isHSVAllocated) { float* hue = _particleData.hue; float* sat = _particleData.sat; float* val = _particleData.val; if (_opacityModifyRGB) { auto hsv = HSV(); for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++hue, ++sat, ++val, ++fadeDt, ++fadeLn) { hsv.fromRgba({*r, *g, *b, *a * (*fadeDt / *fadeLn)}); hsv.h += *hue; hsv.s = abs(*sat); hsv.v = abs(*val); auto colF = hsv.toColor4F(); quad->bl.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->br.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->tl.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->tr.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); } } else { auto hsv = HSV(); for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++hue, ++sat, ++val, ++fadeDt, ++fadeLn) { hsv.fromRgba({*r, *g, *b, *a * (*fadeDt / *fadeLn)}); hsv.h += *hue; hsv.s = abs(*sat); hsv.v = abs(*val); auto col = hsv.toColor4B(); quad->bl.colors.set(col.r, col.g, col.b, col.a); quad->br.colors.set(col.r, col.g, col.b, col.a); quad->tl.colors.set(col.r, col.g, col.b, col.a); quad->tr.colors.set(col.r, col.g, col.b, col.a); } } } else { // set color if (_opacityModifyRGB) { for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++fadeDt, ++fadeLn) { uint8_t colorR = *r * *a * 255; uint8_t colorG = *g * *a * 255; uint8_t colorB = *b * *a * 255; uint8_t colorA = *a * (*fadeDt / *fadeLn) * 255; quad->bl.colors.set(colorR, colorG, colorB, colorA); quad->br.colors.set(colorR, colorG, colorB, colorA); quad->tl.colors.set(colorR, colorG, colorB, colorA); quad->tr.colors.set(colorR, colorG, colorB, colorA); } } else { for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++fadeDt, ++fadeLn) { uint8_t colorR = *r * 255; uint8_t colorG = *g * 255; uint8_t colorB = *b * 255; uint8_t colorA = *a * (*fadeDt / *fadeLn) * 255; quad->bl.colors.set(colorR, colorG, colorB, colorA); quad->br.colors.set(colorR, colorG, colorB, colorA); quad->tl.colors.set(colorR, colorG, colorB, colorA); quad->tr.colors.set(colorR, colorG, colorB, colorA); } } } } else { // HSV calculation is expensive, so we should skip it if it's not enabled. if (_isHSVAllocated) { float* hue = _particleData.hue; float* sat = _particleData.sat; float* val = _particleData.val; if (_opacityModifyRGB) { auto hsv = HSV(); for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++hue, ++sat, ++val) { hsv.fromRgba({*r, *g, *b, *a}); hsv.h += *hue; hsv.s = abs(*sat); hsv.v = abs(*val); auto colF = hsv.toColor4F(); quad->bl.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->br.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->tl.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); quad->tr.colors.set(colF.r * colF.a * 255.0F, colF.g * colF.a * 255.0F, colF.b * colF.a * 255.0F, colF.a * 255.0F); } } else { auto hsv = HSV(); for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a, ++hue, ++sat, ++val) { hsv.fromRgba({*r, *g, *b, *a}); hsv.h += *hue; hsv.s = abs(*sat); hsv.v = abs(*val); auto col = hsv.toColor4B(); quad->bl.colors.set(col.r, col.g, col.b, col.a); quad->br.colors.set(col.r, col.g, col.b, col.a); quad->tl.colors.set(col.r, col.g, col.b, col.a); quad->tr.colors.set(col.r, col.g, col.b, col.a); } } } else { // set color if (_opacityModifyRGB) { for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a) { uint8_t colorR = *r * *a * 255; uint8_t colorG = *g * *a * 255; uint8_t colorB = *b * *a * 255; uint8_t colorA = *a * 255; quad->bl.colors.set(colorR, colorG, colorB, colorA); quad->br.colors.set(colorR, colorG, colorB, colorA); quad->tl.colors.set(colorR, colorG, colorB, colorA); quad->tr.colors.set(colorR, colorG, colorB, colorA); } } else { for (int i = 0; i < _particleCount; ++i, ++quad, ++r, ++g, ++b, ++a) { uint8_t colorR = *r * 255; uint8_t colorG = *g * 255; uint8_t colorB = *b * 255; uint8_t colorA = *a * 255; quad->bl.colors.set(colorR, colorG, colorB, colorA); quad->br.colors.set(colorR, colorG, colorB, colorA); quad->tl.colors.set(colorR, colorG, colorB, colorA); quad->tr.colors.set(colorR, colorG, colorB, colorA); } } } } // The reason for using for-loops separately for every property is because // When the processor needs to read from or write to a location in memory, // it first checks whether a copy of that data is in the cpu's cache. // And wether if every property's memory of the particle system is continuous, // for the purpose of improving cache hit rate, we should process only one property in one for-loop. // It was proved to be effective especially for low-end devices. if ((_isLifeAnimated || _isEmitterAnimated || _isLoopAnimated) && _isAnimAllocated) { V3F_C4B_T2F_Quad* quad = startQuad; unsigned short* cellIndex = _particleData.animCellIndex; ParticleFrameDescriptor index; for (int i = 0; i < _particleCount; ++i, ++quad, ++cellIndex) { float left = 0.0F, bottom = 0.0F, top = 1.0F, right = 1.0F; // TODO: index.isRotated should be treated accordingly auto iter = _animationIndices.find(*cellIndex); if (iter == _animationIndices.end()) index.rect = {0, 0, float(_texture->getPixelsWide()), float(_texture->getPixelsHigh())}; else index = iter->second; auto texWidth = _texture->getPixelsWide(); auto texHeight = _texture->getPixelsHigh(); left = index.rect.origin.x / texWidth; right = (index.rect.origin.x + index.rect.size.x) / texWidth; top = index.rect.origin.y / texHeight; bottom = (index.rect.origin.y + index.rect.size.y) / texHeight; quad->bl.texCoords.u = left; quad->bl.texCoords.v = bottom; quad->br.texCoords.u = right; quad->br.texCoords.v = bottom; quad->tl.texCoords.u = left; quad->tl.texCoords.v = top; quad->tr.texCoords.u = right; quad->tr.texCoords.v = top; } } } // overriding draw method void ParticleSystemQuad::draw(Renderer* renderer, const Mat4& transform, uint32_t flags) { // quad command if (_particleCount > 0) { auto programState = _quadCommand.getPipelineDescriptor().programState; ax::Mat4 projectionMat = _director->getMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_PROJECTION); programState->setUniform(_mvpMatrixLocaiton, projectionMat.m, sizeof(projectionMat.m)); _quadCommand.init(_globalZOrder, _texture, _blendFunc, _quads, _particleCount, transform, flags); renderer->addCommand(&_quadCommand); } } void ParticleSystemQuad::setTotalParticles(int tp) { // If we are setting the total number of particles to a number higher // than what is allocated, we need to allocate new arrays if (tp > _allocatedParticles) { // Allocate new memory size_t quadsSize = sizeof(_quads[0]) * tp * 1; size_t indicesSize = sizeof(_indices[0]) * tp * 6 * 1; _particleData.release(); if (!_particleData.init(tp)) { AXLOG("Particle system: not enough memory"); return; } V3F_C4B_T2F_Quad* quadsNew = (V3F_C4B_T2F_Quad*)realloc(_quads, quadsSize); unsigned short* indicesNew = (unsigned short*)realloc(_indices, indicesSize); if (quadsNew && indicesNew) { // Assign pointers _quads = quadsNew; _indices = indicesNew; // Clear the memory memset(_quads, 0, quadsSize); memset(_indices, 0, indicesSize); _allocatedParticles = tp; } else { // Out of memory, failed to resize some array if (quadsNew) _quads = quadsNew; if (indicesNew) _indices = indicesNew; AXLOG("Particle system: out of memory"); return; } _totalParticles = tp; // Init particles if (_batchNode) { for (int i = 0; i < _totalParticles; i++) { _particleData.atlasIndex[i] = i; } } initIndices(); // setupVBO(); // fixed https://axmol.dev//issues/3990 // Updates texture coords. updateTexCoords(); } else { _totalParticles = tp; } // fixed issue #5762 // reset the emission rate setEmissionRate(_totalParticles / _life); resetSystem(); } void ParticleSystemQuad::listenRendererRecreated(EventCustom* /*event*/) { // when comes to foreground in android, _buffersVBO and _VAOname is a wild handle // before recreating, we need to reset them to 0 // memset(_buffersVBO, 0, sizeof(_buffersVBO)); // if (Configuration::getInstance()->supportsShareableVAO()) // { // _VAOname = 0; // setupVBOandVAO(); // } // else // { // setupVBO(); // } } bool ParticleSystemQuad::allocMemory() { AXASSERT(!_batchNode, "Memory should not be alloced when not using batchNode"); AX_SAFE_FREE(_quads); AX_SAFE_FREE(_indices); _quads = (V3F_C4B_T2F_Quad*)malloc(_totalParticles * sizeof(V3F_C4B_T2F_Quad)); _indices = (unsigned short*)malloc(_totalParticles * 6 * sizeof(unsigned short)); if (!_quads || !_indices) { AXLOG("axmol: Particle system: not enough memory"); AX_SAFE_FREE(_quads); AX_SAFE_FREE(_indices); return false; } memset(_quads, 0, _totalParticles * sizeof(V3F_C4B_T2F_Quad)); memset(_indices, 0, _totalParticles * 6 * sizeof(unsigned short)); return true; } void ParticleSystemQuad::setBatchNode(ParticleBatchNode* batchNode) { if (_batchNode != batchNode) { ParticleBatchNode* oldBatch = _batchNode; ParticleSystem::setBatchNode(batchNode); // NEW: is self render ? if (!batchNode) { allocMemory(); initIndices(); setTexture(oldBatch->getTexture()); // setupVBO(); } // OLD: was it self render ? cleanup else if (!oldBatch) { // copy current state to batch V3F_C4B_T2F_Quad* batchQuads = _batchNode->getTextureAtlas()->getQuads(); V3F_C4B_T2F_Quad* quad = &(batchQuads[_atlasIndex]); memcpy(quad, _quads, _totalParticles * sizeof(_quads[0])); AX_SAFE_FREE(_quads); AX_SAFE_FREE(_indices); } } } ParticleSystemQuad* ParticleSystemQuad::create() { ParticleSystemQuad* particleSystemQuad = new ParticleSystemQuad(); if (particleSystemQuad->init()) { particleSystemQuad->autorelease(); return particleSystemQuad; } AX_SAFE_DELETE(particleSystemQuad); return nullptr; } std::string ParticleSystemQuad::getDescription() const { return StringUtils::format("", _tag, _totalParticles); } NS_AX_END