/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2011 Zynga Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // #include "CCParticleSystem.h" #include "CCParticleBatchNode.h" #include "ccTypes.h" #include "textures/CCTextureCache.h" #include "textures/CCTextureAtlas.h" #include "support/base64.h" #include "platform/CCFileUtils.h" #include "platform/CCImage.h" #include "platform/platform.h" #include "support/zip_support/ZipUtils.h" #include "CCDirector.h" #include "support/CCProfiling.h" // opengl #include "CCGL.h" #include using namespace std; NS_CC_BEGIN // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // ParticleSystem::ParticleSystem() : _plistFile("") , _elapsed(0) , _particles(NULL) , _emitCounter(0) , _particleIdx(0) , _batchNode(NULL) , _atlasIndex(0) , _transformSystemDirty(false) , _allocatedParticles(0) , _isActive(true) , _particleCount(0) , _duration(0) , _sourcePosition(Point::ZERO) , _posVar(Point::ZERO) , _life(0) , _lifeVar(0) , _angle(0) , _angleVar(0) , _startSize(0) , _startSizeVar(0) , _endSize(0) , _endSizeVar(0) , _startSpin(0) , _startSpinVar(0) , _endSpin(0) , _endSpinVar(0) , _emissionRate(0) , _totalParticles(0) , _texture(NULL) , _opacityModifyRGB(false) , _isBlendAdditive(false) , _positionType(kPositionTypeFree) , _isAutoRemoveOnFinish(false) , _emitterMode(kParticleModeGravity) { modeA.gravity = Point::ZERO; modeA.speed = 0; modeA.speedVar = 0; modeA.tangentialAccel = 0; modeA.tangentialAccelVar = 0; modeA.radialAccel = 0; modeA.radialAccelVar = 0; modeA.rotationIsDir = false; modeB.startRadius = 0; modeB.startRadiusVar = 0; modeB.endRadius = 0; modeB.endRadiusVar = 0; modeB.rotatePerSecond = 0; modeB.rotatePerSecondVar = 0; _blendFunc.src = CC_BLEND_SRC; _blendFunc.dst = CC_BLEND_DST; } // implementation ParticleSystem ParticleSystem * ParticleSystem::create(const char *plistFile) { ParticleSystem *pRet = new ParticleSystem(); if (pRet && pRet->initWithFile(plistFile)) { pRet->autorelease(); return pRet; } CC_SAFE_DELETE(pRet); return pRet; } ParticleSystem* ParticleSystem::createWithTotalParticles(unsigned int numberOfParticles) { ParticleSystem *pRet = new ParticleSystem(); if (pRet && pRet->initWithTotalParticles(numberOfParticles)) { pRet->autorelease(); return pRet; } CC_SAFE_DELETE(pRet); return pRet; } bool ParticleSystem::init() { return initWithTotalParticles(150); } bool ParticleSystem::initWithFile(const char *plistFile) { bool bRet = false; _plistFile = FileUtils::getInstance()->fullPathForFilename(plistFile); Dictionary *dict = Dictionary::createWithContentsOfFileThreadSafe(_plistFile.c_str()); CCAssert( dict != NULL, "Particles: file not found"); // XXX compute path from a path, should define a function somewhere to do it string listFilePath = plistFile; if (listFilePath.find('/') != string::npos) { listFilePath = listFilePath.substr(0, listFilePath.rfind('/') + 1); bRet = this->initWithDictionary(dict, listFilePath.c_str()); } else { bRet = this->initWithDictionary(dict, ""); } dict->release(); return bRet; } bool ParticleSystem::initWithDictionary(Dictionary *dictionary) { return initWithDictionary(dictionary, ""); } bool ParticleSystem::initWithDictionary(Dictionary *dictionary, const char *dirname) { bool bRet = false; unsigned char *buffer = NULL; unsigned char *deflated = NULL; Image *image = NULL; do { int maxParticles = dictionary->valueForKey("maxParticles")->intValue(); // self, not super if(this->initWithTotalParticles(maxParticles)) { // angle _angle = dictionary->valueForKey("angle")->floatValue(); _angleVar = dictionary->valueForKey("angleVariance")->floatValue(); // duration _duration = dictionary->valueForKey("duration")->floatValue(); // blend function _blendFunc.src = dictionary->valueForKey("blendFuncSource")->intValue(); _blendFunc.dst = dictionary->valueForKey("blendFuncDestination")->intValue(); // color _startColor.r = dictionary->valueForKey("startColorRed")->floatValue(); _startColor.g = dictionary->valueForKey("startColorGreen")->floatValue(); _startColor.b = dictionary->valueForKey("startColorBlue")->floatValue(); _startColor.a = dictionary->valueForKey("startColorAlpha")->floatValue(); _startColorVar.r = dictionary->valueForKey("startColorVarianceRed")->floatValue(); _startColorVar.g = dictionary->valueForKey("startColorVarianceGreen")->floatValue(); _startColorVar.b = dictionary->valueForKey("startColorVarianceBlue")->floatValue(); _startColorVar.a = dictionary->valueForKey("startColorVarianceAlpha")->floatValue(); _endColor.r = dictionary->valueForKey("finishColorRed")->floatValue(); _endColor.g = dictionary->valueForKey("finishColorGreen")->floatValue(); _endColor.b = dictionary->valueForKey("finishColorBlue")->floatValue(); _endColor.a = dictionary->valueForKey("finishColorAlpha")->floatValue(); _endColorVar.r = dictionary->valueForKey("finishColorVarianceRed")->floatValue(); _endColorVar.g = dictionary->valueForKey("finishColorVarianceGreen")->floatValue(); _endColorVar.b = dictionary->valueForKey("finishColorVarianceBlue")->floatValue(); _endColorVar.a = dictionary->valueForKey("finishColorVarianceAlpha")->floatValue(); // particle size _startSize = dictionary->valueForKey("startParticleSize")->floatValue(); _startSizeVar = dictionary->valueForKey("startParticleSizeVariance")->floatValue(); _endSize = dictionary->valueForKey("finishParticleSize")->floatValue(); _endSizeVar = dictionary->valueForKey("finishParticleSizeVariance")->floatValue(); // position float x = dictionary->valueForKey("sourcePositionx")->floatValue(); float y = dictionary->valueForKey("sourcePositiony")->floatValue(); this->setPosition( Point(x,y) ); _posVar.x = dictionary->valueForKey("sourcePositionVariancex")->floatValue(); _posVar.y = dictionary->valueForKey("sourcePositionVariancey")->floatValue(); // Spinning _startSpin = dictionary->valueForKey("rotationStart")->floatValue(); _startSpinVar = dictionary->valueForKey("rotationStartVariance")->floatValue(); _endSpin= dictionary->valueForKey("rotationEnd")->floatValue(); _endSpinVar= dictionary->valueForKey("rotationEndVariance")->floatValue(); _emitterMode = dictionary->valueForKey("emitterType")->intValue(); // Mode A: Gravity + tangential accel + radial accel if( _emitterMode == kParticleModeGravity ) { // gravity modeA.gravity.x = dictionary->valueForKey("gravityx")->floatValue(); modeA.gravity.y = dictionary->valueForKey("gravityy")->floatValue(); // speed modeA.speed = dictionary->valueForKey("speed")->floatValue(); modeA.speedVar = dictionary->valueForKey("speedVariance")->floatValue(); // radial acceleration modeA.radialAccel = dictionary->valueForKey("radialAcceleration")->floatValue(); modeA.radialAccelVar = dictionary->valueForKey("radialAccelVariance")->floatValue(); // tangential acceleration modeA.tangentialAccel = dictionary->valueForKey("tangentialAcceleration")->floatValue(); modeA.tangentialAccelVar = dictionary->valueForKey("tangentialAccelVariance")->floatValue(); // rotation is dir modeA.rotationIsDir = dictionary->valueForKey("rotationIsDir")->boolValue(); } // or Mode B: radius movement else if( _emitterMode == kParticleModeRadius ) { modeB.startRadius = dictionary->valueForKey("maxRadius")->floatValue(); modeB.startRadiusVar = dictionary->valueForKey("maxRadiusVariance")->floatValue(); modeB.endRadius = dictionary->valueForKey("minRadius")->floatValue(); modeB.endRadiusVar = 0.0f; modeB.rotatePerSecond = dictionary->valueForKey("rotatePerSecond")->floatValue(); modeB.rotatePerSecondVar = dictionary->valueForKey("rotatePerSecondVariance")->floatValue(); } else { CCAssert( false, "Invalid emitterType in config file"); CC_BREAK_IF(true); } // life span _life = dictionary->valueForKey("particleLifespan")->floatValue(); _lifeVar = dictionary->valueForKey("particleLifespanVariance")->floatValue(); // emission Rate _emissionRate = _totalParticles / _life; //don't get the internal texture if a batchNode is used if (!_batchNode) { // Set a compatible default for the alpha transfer _opacityModifyRGB = false; // texture // Try to get the texture from the cache std::string textureName = dictionary->valueForKey("textureFileName")->getCString(); size_t rPos = textureName.rfind('/'); if (rPos != string::npos) { string textureDir = textureName.substr(0, rPos + 1); if (dirname != NULL && textureDir != dirname) { textureName = textureName.substr(rPos+1); textureName = string(dirname) + textureName; } } else { if (dirname != NULL) { textureName = string(dirname) + textureName; } } Texture2D *tex = NULL; if (textureName.length() > 0) { // set not pop-up message box when load image failed bool bNotify = FileUtils::getInstance()->isPopupNotify(); FileUtils::getInstance()->setPopupNotify(false); tex = TextureCache::getInstance()->addImage(textureName.c_str()); // reset the value of UIImage notify FileUtils::getInstance()->setPopupNotify(bNotify); } if (tex) { setTexture(tex); } else { const char *textureData = dictionary->valueForKey("textureImageData")->getCString(); CCAssert(textureData, ""); int dataLen = strlen(textureData); if(dataLen != 0) { // if it fails, try to get it from the base64-gzipped data int decodeLen = base64Decode((unsigned char*)textureData, (unsigned int)dataLen, &buffer); CCAssert( buffer != NULL, "CCParticleSystem: error decoding textureImageData"); CC_BREAK_IF(!buffer); int deflatedLen = ZipUtils::ccInflateMemory(buffer, decodeLen, &deflated); CCAssert( deflated != NULL, "CCParticleSystem: error ungzipping textureImageData"); CC_BREAK_IF(!deflated); // For android, we should retain it in VolatileTexture::addImage which invoked in TextureCache::getInstance()->addUIImage() image = new Image(); bool isOK = image->initWithImageData(deflated, deflatedLen); CCAssert(isOK, "CCParticleSystem: error init image with Data"); CC_BREAK_IF(!isOK); setTexture(TextureCache::getInstance()->addUIImage(image, textureName.c_str())); image->release(); } } CCAssert( this->_texture != NULL, "CCParticleSystem: error loading the texture"); } bRet = true; } } while (0); CC_SAFE_DELETE_ARRAY(buffer); CC_SAFE_DELETE_ARRAY(deflated); return bRet; } bool ParticleSystem::initWithTotalParticles(unsigned int numberOfParticles) { _totalParticles = numberOfParticles; CC_SAFE_FREE(_particles); _particles = (tParticle*)calloc(_totalParticles, sizeof(tParticle)); if( ! _particles ) { CCLOG("Particle system: not enough memory"); this->release(); return false; } _allocatedParticles = numberOfParticles; if (_batchNode) { for (unsigned int i = 0; i < _totalParticles; i++) { _particles[i].atlasIndex=i; } } // default, active _isActive = true; // default blend function _blendFunc.src = CC_BLEND_SRC; _blendFunc.dst = CC_BLEND_DST; // default movement type; _positionType = kPositionTypeFree; // by default be in mode A: _emitterMode = kParticleModeGravity; // default: modulate // XXX: not used // colorModulate = YES; _isAutoRemoveOnFinish = false; // Optimization: compile updateParticle method //updateParticleSel = @selector(updateQuadWithParticle:newPosition:); //updateParticleImp = (CC_UPDATE_PARTICLE_IMP) [self methodForSelector:updateParticleSel]; //for batchNode _transformSystemDirty = false; // update after action in run! this->scheduleUpdateWithPriority(1); return true; } ParticleSystem::~ParticleSystem() { // Since the scheduler retains the "target (in this case the ParticleSystem) // it is not needed to call "unscheduleUpdate" here. In fact, it will be called in "cleanup" //unscheduleUpdate(); CC_SAFE_FREE(_particles); CC_SAFE_RELEASE(_texture); } bool ParticleSystem::addParticle() { if (this->isFull()) { return false; } tParticle * particle = &_particles[ _particleCount ]; this->initParticle(particle); ++_particleCount; return true; } void ParticleSystem::initParticle(tParticle* particle) { // timeToLive // no negative life. prevent division by 0 particle->timeToLive = _life + _lifeVar * CCRANDOM_MINUS1_1(); particle->timeToLive = MAX(0, particle->timeToLive); // position particle->pos.x = _sourcePosition.x + _posVar.x * CCRANDOM_MINUS1_1(); particle->pos.y = _sourcePosition.y + _posVar.y * CCRANDOM_MINUS1_1(); // Color Color4F start; start.r = clampf(_startColor.r + _startColorVar.r * CCRANDOM_MINUS1_1(), 0, 1); start.g = clampf(_startColor.g + _startColorVar.g * CCRANDOM_MINUS1_1(), 0, 1); start.b = clampf(_startColor.b + _startColorVar.b * CCRANDOM_MINUS1_1(), 0, 1); start.a = clampf(_startColor.a + _startColorVar.a * CCRANDOM_MINUS1_1(), 0, 1); Color4F end; end.r = clampf(_endColor.r + _endColorVar.r * CCRANDOM_MINUS1_1(), 0, 1); end.g = clampf(_endColor.g + _endColorVar.g * CCRANDOM_MINUS1_1(), 0, 1); end.b = clampf(_endColor.b + _endColorVar.b * CCRANDOM_MINUS1_1(), 0, 1); end.a = clampf(_endColor.a + _endColorVar.a * CCRANDOM_MINUS1_1(), 0, 1); particle->color = start; particle->deltaColor.r = (end.r - start.r) / particle->timeToLive; particle->deltaColor.g = (end.g - start.g) / particle->timeToLive; particle->deltaColor.b = (end.b - start.b) / particle->timeToLive; particle->deltaColor.a = (end.a - start.a) / particle->timeToLive; // size float startS = _startSize + _startSizeVar * CCRANDOM_MINUS1_1(); startS = MAX(0, startS); // No negative value particle->size = startS; if( _endSize == kParticleStartSizeEqualToEndSize ) { particle->deltaSize = 0; } else { float endS = _endSize + _endSizeVar * CCRANDOM_MINUS1_1(); endS = MAX(0, endS); // No negative values particle->deltaSize = (endS - startS) / particle->timeToLive; } // rotation float startA = _startSpin + _startSpinVar * CCRANDOM_MINUS1_1(); float endA = _endSpin + _endSpinVar * CCRANDOM_MINUS1_1(); particle->rotation = startA; particle->deltaRotation = (endA - startA) / particle->timeToLive; // position if( _positionType == kPositionTypeFree ) { particle->startPos = this->convertToWorldSpace(Point::ZERO); } else if ( _positionType == kPositionTypeRelative ) { particle->startPos = _position; } // direction float a = CC_DEGREES_TO_RADIANS( _angle + _angleVar * CCRANDOM_MINUS1_1() ); // Mode Gravity: A if (_emitterMode == kParticleModeGravity) { Point v(cosf( a ), sinf( a )); float s = modeA.speed + modeA.speedVar * CCRANDOM_MINUS1_1(); // direction particle->modeA.dir = v * s ; // radial accel particle->modeA.radialAccel = modeA.radialAccel + modeA.radialAccelVar * CCRANDOM_MINUS1_1(); // tangential accel particle->modeA.tangentialAccel = modeA.tangentialAccel + modeA.tangentialAccelVar * CCRANDOM_MINUS1_1(); // rotation is dir if(modeA.rotationIsDir) particle->rotation = -CC_RADIANS_TO_DEGREES(particle->modeA.dir.getAngle()); } // Mode Radius: B else { // Set the default diameter of the particle from the source position float startRadius = modeB.startRadius + modeB.startRadiusVar * CCRANDOM_MINUS1_1(); float endRadius = modeB.endRadius + modeB.endRadiusVar * CCRANDOM_MINUS1_1(); particle->modeB.radius = startRadius; if(modeB.endRadius == kParticleStartRadiusEqualToEndRadius) { particle->modeB.deltaRadius = 0; } else { particle->modeB.deltaRadius = (endRadius - startRadius) / particle->timeToLive; } particle->modeB.angle = a; particle->modeB.degreesPerSecond = CC_DEGREES_TO_RADIANS(modeB.rotatePerSecond + modeB.rotatePerSecondVar * CCRANDOM_MINUS1_1()); } } void ParticleSystem::stopSystem() { _isActive = false; _elapsed = _duration; _emitCounter = 0; } void ParticleSystem::resetSystem() { _isActive = true; _elapsed = 0; for (_particleIdx = 0; _particleIdx < _particleCount; ++_particleIdx) { tParticle *p = &_particles[_particleIdx]; p->timeToLive = 0; } } bool ParticleSystem::isFull() { return (_particleCount == _totalParticles); } // ParticleSystem - MainLoop void ParticleSystem::update(float dt) { CC_PROFILER_START_CATEGORY(kProfilerCategoryParticles , "CCParticleSystem - update"); if (_isActive && _emissionRate) { float rate = 1.0f / _emissionRate; //issue #1201, prevent bursts of particles, due to too high emitCounter if (_particleCount < _totalParticles) { _emitCounter += dt; } while (_particleCount < _totalParticles && _emitCounter > rate) { this->addParticle(); _emitCounter -= rate; } _elapsed += dt; if (_duration != -1 && _duration < _elapsed) { this->stopSystem(); } } _particleIdx = 0; Point currentPosition = Point::ZERO; if (_positionType == kPositionTypeFree) { currentPosition = this->convertToWorldSpace(Point::ZERO); } else if (_positionType == kPositionTypeRelative) { currentPosition = _position; } if (_visible) { while (_particleIdx < _particleCount) { tParticle *p = &_particles[_particleIdx]; // life p->timeToLive -= dt; if (p->timeToLive > 0) { // Mode A: gravity, direction, tangential accel & radial accel if (_emitterMode == kParticleModeGravity) { Point tmp, radial, tangential; radial = Point::ZERO; // radial acceleration if (p->pos.x || p->pos.y) { radial = p->pos.normalize(); } tangential = radial; radial = radial * p->modeA.radialAccel; // tangential acceleration float newy = tangential.x; tangential.x = -tangential.y; tangential.y = newy; tangential = tangential * p->modeA.tangentialAccel; // (gravity + radial + tangential) * dt tmp = radial + tangential + modeA.gravity; tmp = tmp * dt; p->modeA.dir = p->modeA.dir + tmp; tmp = p->modeA.dir * dt; p->pos = p->pos + tmp; } // Mode B: radius movement else { // Update the angle and radius of the particle. p->modeB.angle += p->modeB.degreesPerSecond * dt; p->modeB.radius += p->modeB.deltaRadius * dt; p->pos.x = - cosf(p->modeB.angle) * p->modeB.radius; p->pos.y = - sinf(p->modeB.angle) * p->modeB.radius; } // color p->color.r += (p->deltaColor.r * dt); p->color.g += (p->deltaColor.g * dt); p->color.b += (p->deltaColor.b * dt); p->color.a += (p->deltaColor.a * dt); // size p->size += (p->deltaSize * dt); p->size = MAX( 0, p->size ); // angle p->rotation += (p->deltaRotation * dt); // // update values in quad // Point newPos; if (_positionType == kPositionTypeFree || _positionType == kPositionTypeRelative) { Point diff = currentPosition - p->startPos; newPos = p->pos - diff; } else { newPos = p->pos; } // translate newPos to correct position, since matrix transform isn't performed in batchnode // don't update the particle with the new position information, it will interfere with the radius and tangential calculations if (_batchNode) { newPos.x+=_position.x; newPos.y+=_position.y; } updateQuadWithParticle(p, newPos); //updateParticleImp(self, updateParticleSel, p, newPos); // update particle counter ++_particleIdx; } else { // life < 0 int currentIndex = p->atlasIndex; if( _particleIdx != _particleCount-1 ) { _particles[_particleIdx] = _particles[_particleCount-1]; } if (_batchNode) { //disable the switched particle _batchNode->disableParticle(_atlasIndex+currentIndex); //switch indexes _particles[_particleCount-1].atlasIndex = currentIndex; } --_particleCount; if( _particleCount == 0 && _isAutoRemoveOnFinish ) { this->unscheduleUpdate(); _parent->removeChild(this, true); return; } } } //while _transformSystemDirty = false; } if (! _batchNode) { postStep(); } CC_PROFILER_STOP_CATEGORY(kProfilerCategoryParticles , "CCParticleSystem - update"); } void ParticleSystem::updateWithNoTime(void) { this->update(0.0f); } void ParticleSystem::updateQuadWithParticle(tParticle* particle, const Point& newPosition) { CC_UNUSED_PARAM(particle); CC_UNUSED_PARAM(newPosition); // should be overridden } void ParticleSystem::postStep() { // should be overridden } // ParticleSystem - Texture protocol void ParticleSystem::setTexture(Texture2D* var) { if (_texture != var) { CC_SAFE_RETAIN(var); CC_SAFE_RELEASE(_texture); _texture = var; updateBlendFunc(); } } void ParticleSystem::updateBlendFunc() { CCAssert(! _batchNode, "Can't change blending functions when the particle is being batched"); if(_texture) { bool premultiplied = _texture->hasPremultipliedAlpha(); _opacityModifyRGB = false; if( _texture && ( _blendFunc.src == CC_BLEND_SRC && _blendFunc.dst == CC_BLEND_DST ) ) { if( premultiplied ) { _opacityModifyRGB = true; } else { _blendFunc.src = GL_SRC_ALPHA; _blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; } } } } Texture2D * ParticleSystem::getTexture() { return _texture; } // ParticleSystem - Additive Blending void ParticleSystem::setBlendAdditive(bool additive) { if( additive ) { _blendFunc.src = GL_SRC_ALPHA; _blendFunc.dst = GL_ONE; } else { if( _texture && ! _texture->hasPremultipliedAlpha() ) { _blendFunc.src = GL_SRC_ALPHA; _blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; } else { _blendFunc.src = CC_BLEND_SRC; _blendFunc.dst = CC_BLEND_DST; } } } bool ParticleSystem::isBlendAdditive() const { return( _blendFunc.src == GL_SRC_ALPHA && _blendFunc.dst == GL_ONE); } // ParticleSystem - Properties of Gravity Mode void ParticleSystem::setTangentialAccel(float t) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.tangentialAccel = t; } float ParticleSystem::getTangentialAccel() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.tangentialAccel; } void ParticleSystem::setTangentialAccelVar(float t) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.tangentialAccelVar = t; } float ParticleSystem::getTangentialAccelVar() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.tangentialAccelVar; } void ParticleSystem::setRadialAccel(float t) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.radialAccel = t; } float ParticleSystem::getRadialAccel() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.radialAccel; } void ParticleSystem::setRadialAccelVar(float t) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.radialAccelVar = t; } float ParticleSystem::getRadialAccelVar() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.radialAccelVar; } void ParticleSystem::setRotationIsDir(bool t) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.rotationIsDir = t; } bool ParticleSystem::getRotationIsDir() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.rotationIsDir; } void ParticleSystem::setGravity(const Point& g) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.gravity = g; } const Point& ParticleSystem::getGravity() { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.gravity; } void ParticleSystem::setSpeed(float speed) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.speed = speed; } float ParticleSystem::getSpeed() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.speed; } void ParticleSystem::setSpeedVar(float speedVar) { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); modeA.speedVar = speedVar; } float ParticleSystem::getSpeedVar() const { CCAssert( _emitterMode == kParticleModeGravity, "Particle Mode should be Gravity"); return modeA.speedVar; } // ParticleSystem - Properties of Radius Mode void ParticleSystem::setStartRadius(float startRadius) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.startRadius = startRadius; } float ParticleSystem::getStartRadius() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.startRadius; } void ParticleSystem::setStartRadiusVar(float startRadiusVar) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.startRadiusVar = startRadiusVar; } float ParticleSystem::getStartRadiusVar() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.startRadiusVar; } void ParticleSystem::setEndRadius(float endRadius) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.endRadius = endRadius; } float ParticleSystem::getEndRadius() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.endRadius; } void ParticleSystem::setEndRadiusVar(float endRadiusVar) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.endRadiusVar = endRadiusVar; } float ParticleSystem::getEndRadiusVar() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.endRadiusVar; } void ParticleSystem::setRotatePerSecond(float degrees) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.rotatePerSecond = degrees; } float ParticleSystem::getRotatePerSecond() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.rotatePerSecond; } void ParticleSystem::setRotatePerSecondVar(float degrees) { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); modeB.rotatePerSecondVar = degrees; } float ParticleSystem::getRotatePerSecondVar() const { CCAssert( _emitterMode == kParticleModeRadius, "Particle Mode should be Radius"); return modeB.rotatePerSecondVar; } bool ParticleSystem::isActive() const { return _isActive; } unsigned int ParticleSystem::getParticleCount() const { return _particleCount; } float ParticleSystem::getDuration() { return _duration; } void ParticleSystem::setDuration(float var) { _duration = var; } const Point& ParticleSystem::getSourcePosition() const { return _sourcePosition; } void ParticleSystem::setSourcePosition(const Point& var) { _sourcePosition = var; } const Point& ParticleSystem::getPosVar() const { return _posVar; } void ParticleSystem::setPosVar(const Point& var) { _posVar = var; } float ParticleSystem::getLife() { return _life; } void ParticleSystem::setLife(float var) { _life = var; } float ParticleSystem::getLifeVar() { return _lifeVar; } void ParticleSystem::setLifeVar(float var) { _lifeVar = var; } float ParticleSystem::getAngle() { return _angle; } void ParticleSystem::setAngle(float var) { _angle = var; } float ParticleSystem::getAngleVar() { return _angleVar; } void ParticleSystem::setAngleVar(float var) { _angleVar = var; } float ParticleSystem::getStartSize() { return _startSize; } void ParticleSystem::setStartSize(float var) { _startSize = var; } float ParticleSystem::getStartSizeVar() { return _startSizeVar; } void ParticleSystem::setStartSizeVar(float var) { _startSizeVar = var; } float ParticleSystem::getEndSize() { return _endSize; } void ParticleSystem::setEndSize(float var) { _endSize = var; } float ParticleSystem::getEndSizeVar() { return _endSizeVar; } void ParticleSystem::setEndSizeVar(float var) { _endSizeVar = var; } const Color4F& ParticleSystem::getStartColor() const { return _startColor; } void ParticleSystem::setStartColor(const Color4F& var) { _startColor = var; } const Color4F& ParticleSystem::getStartColorVar() const { return _startColorVar; } void ParticleSystem::setStartColorVar(const Color4F& var) { _startColorVar = var; } const Color4F& ParticleSystem::getEndColor() const { return _endColor; } void ParticleSystem::setEndColor(const Color4F& var) { _endColor = var; } const Color4F& ParticleSystem::getEndColorVar() const { return _endColorVar; } void ParticleSystem::setEndColorVar(const Color4F& var) { _endColorVar = var; } float ParticleSystem::getStartSpin() { return _startSpin; } void ParticleSystem::setStartSpin(float var) { _startSpin = var; } float ParticleSystem::getStartSpinVar() { return _startSpinVar; } void ParticleSystem::setStartSpinVar(float var) { _startSpinVar = var; } float ParticleSystem::getEndSpin() { return _endSpin; } void ParticleSystem::setEndSpin(float var) { _endSpin = var; } float ParticleSystem::getEndSpinVar() { return _endSpinVar; } void ParticleSystem::setEndSpinVar(float var) { _endSpinVar = var; } float ParticleSystem::getEmissionRate() { return _emissionRate; } void ParticleSystem::setEmissionRate(float var) { _emissionRate = var; } unsigned int ParticleSystem::getTotalParticles() { return _totalParticles; } void ParticleSystem::setTotalParticles(unsigned int var) { CCAssert( var <= _allocatedParticles, "Particle: resizing particle array only supported for quads"); _totalParticles = var; } const BlendFunc& ParticleSystem::getBlendFunc() const { return _blendFunc; } void ParticleSystem::setBlendFunc(const BlendFunc &blendFunc) { if( _blendFunc.src != blendFunc.src || _blendFunc.dst != blendFunc.dst ) { _blendFunc = blendFunc; this->updateBlendFunc(); } } bool ParticleSystem::getOpacityModifyRGB() { return _opacityModifyRGB; } void ParticleSystem::setOpacityModifyRGB(bool bOpacityModifyRGB) { _opacityModifyRGB = bOpacityModifyRGB; } tPositionType ParticleSystem::getPositionType() { return _positionType; } void ParticleSystem::setPositionType(tPositionType var) { _positionType = var; } bool ParticleSystem::isAutoRemoveOnFinish() const { return _isAutoRemoveOnFinish; } void ParticleSystem::setAutoRemoveOnFinish(bool var) { _isAutoRemoveOnFinish = var; } int ParticleSystem::getEmitterMode() { return _emitterMode; } void ParticleSystem::setEmitterMode(int var) { _emitterMode = var; } // ParticleSystem - methods for batchNode rendering ParticleBatchNode* ParticleSystem::getBatchNode(void) { return _batchNode; } void ParticleSystem::setBatchNode(ParticleBatchNode* batchNode) { if( _batchNode != batchNode ) { _batchNode = batchNode; // weak reference if( batchNode ) { //each particle needs a unique index for (unsigned int i = 0; i < _totalParticles; i++) { _particles[i].atlasIndex=i; } } } } //don't use a transform matrix, this is faster void ParticleSystem::setScale(float s) { _transformSystemDirty = true; Node::setScale(s); } void ParticleSystem::setRotation(float newRotation) { _transformSystemDirty = true; Node::setRotation(newRotation); } void ParticleSystem::setScaleX(float newScaleX) { _transformSystemDirty = true; Node::setScaleX(newScaleX); } void ParticleSystem::setScaleY(float newScaleY) { _transformSystemDirty = true; Node::setScaleY(newScaleY); } NS_CC_END