/**************************************************************************** Copyright (c) 2009 On-Core Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "2d/CCActionGrid3D.h" #include "base/CCDirector.h" NS_CC_BEGIN // implementation of Waves3D Waves3D* Waves3D::create(float duration, const Size& gridSize, unsigned int waves, float amplitude) { Waves3D *pAction = new (std::nothrow) Waves3D(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, waves, amplitude)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Waves3D::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } Waves3D* Waves3D::clone() const { // no copy constructor auto a = new (std::nothrow) Waves3D(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude); a->autorelease(); return a; } void Waves3D::update(float time) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vec3 v = getOriginalVertex(Vec2(i ,j)); v.z += (sinf((float)M_PI * time * _waves * 2 + (v.y+v.x) * 0.01f) * _amplitude * _amplitudeRate); //CCLOG("v.z offset is %f\n", (sinf((float)M_PI * time * _waves * 2 + (v.y+v.x) * .01f) * _amplitude * _amplitudeRate)); setVertex(Vec2(i, j), v); } } } // implementation of FlipX3D FlipX3D* FlipX3D::create(float duration) { FlipX3D *action = new (std::nothrow) FlipX3D(); if (action) { if (action->initWithDuration(duration)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool FlipX3D::initWithDuration(float duration) { return Grid3DAction::initWithDuration(duration, Size(1, 1)); } bool FlipX3D::initWithSize(const Size& gridSize, float duration) { if (gridSize.width != 1 || gridSize.height != 1) { // Grid size must be (1,1) CCASSERT(0, "Grid size must be (1,1)"); return false; } return Grid3DAction::initWithDuration(duration, gridSize); } FlipX3D* FlipX3D::clone() const { // no copy constructor auto a = new (std::nothrow) FlipX3D(); a->initWithSize(_gridSize, _duration); a->autorelease(); return a; } void FlipX3D::update(float time) { float angle = (float)M_PI * time; // 180 degrees float mz = sinf(angle); angle = angle / 2.0f; // x calculates degrees from 0 to 90 float mx = cosf(angle); Vec3 v0, v1, v, diff; v0 = getOriginalVertex(Vec2(1, 1)); v1 = getOriginalVertex(Vec2(0, 0)); float x0 = v0.x; float x1 = v1.x; float x; Vec2 a, b, c, d; if ( x0 > x1 ) { // Normal Grid a = Vec2(0,0); b = Vec2(0,1); c = Vec2(1,0); d = Vec2(1,1); x = x0; } else { // Reversed Grid c = Vec2(0,0); d = Vec2(0,1); a = Vec2(1,0); b = Vec2(1,1); x = x1; } diff.x = ( x - x * mx ); diff.z = fabsf( floorf( (x * mz) / 4.0f ) ); // bottom-left v = getOriginalVertex(a); v.x = diff.x; v.z += diff.z; setVertex(a, v); // upper-left v = getOriginalVertex(b); v.x = diff.x; v.z += diff.z; setVertex(b, v); // bottom-right v = getOriginalVertex(c); v.x -= diff.x; v.z -= diff.z; setVertex(c, v); // upper-right v = getOriginalVertex(d); v.x -= diff.x; v.z -= diff.z; setVertex(d, v); } // implementation of FlipY3D FlipY3D* FlipY3D::clone() const { // no copy constructor auto a = new (std::nothrow) FlipY3D(); a->initWithSize(_gridSize, _duration); a->autorelease(); return a; } FlipY3D* FlipY3D::create(float duration) { FlipY3D *action = new (std::nothrow) FlipY3D(); if (action) { if (action->initWithDuration(duration)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } void FlipY3D::update(float time) { float angle = (float)M_PI * time; // 180 degrees float mz = sinf( angle ); angle = angle / 2.0f; // x calculates degrees from 0 to 90 float my = cosf(angle); Vec3 v0, v1, v, diff; v0 = getOriginalVertex(Vec2(1, 1)); v1 = getOriginalVertex(Vec2(0, 0)); float y0 = v0.y; float y1 = v1.y; float y; Vec2 a, b, c, d; if (y0 > y1) { // Normal Grid a = Vec2(0,0); b = Vec2(0,1); c = Vec2(1,0); d = Vec2(1,1); y = y0; } else { // Reversed Grid b = Vec2(0,0); a = Vec2(0,1); d = Vec2(1,0); c = Vec2(1,1); y = y1; } diff.y = y - y * my; diff.z = fabsf(floorf((y * mz) / 4.0f)); // bottom-left v = getOriginalVertex(a); v.y = diff.y; v.z += diff.z; setVertex(a, v); // upper-left v = getOriginalVertex(b); v.y -= diff.y; v.z -= diff.z; setVertex(b, v); // bottom-right v = getOriginalVertex(c); v.y = diff.y; v.z += diff.z; setVertex(c, v); // upper-right v = getOriginalVertex(d); v.y -= diff.y; v.z -= diff.z; setVertex(d, v); } // implementation of Lens3D Lens3D* Lens3D::create(float duration, const Size& gridSize, const Vec2& position, float radius) { Lens3D *action = new (std::nothrow) Lens3D(); if (action) { if (action->initWithDuration(duration, gridSize, position, radius)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Lens3D::initWithDuration(float duration, const Size& gridSize, const Vec2& position, float radius) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _position = Vec2(-1, -1); setPosition(position); _radius = radius; _lensEffect = 0.7f; _concave = false; _dirty = true; return true; } return false; } Lens3D* Lens3D::clone() const { // no copy constructor auto a = new (std::nothrow) Lens3D(); a->initWithDuration(_duration, _gridSize, _position, _radius); a->autorelease(); return a; } void Lens3D::setPosition(const Vec2& pos) { if( !pos.equals(_position)) { _position = pos; _dirty = true; } } void Lens3D::update(float time) { CC_UNUSED_PARAM(time); if (_dirty) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vec3 v = getOriginalVertex(Vec2(i, j)); Vec2 vect = _position - Vec2(v.x, v.y); float r = vect.getLength(); if (r < _radius) { r = _radius - r; float pre_log = r / _radius; if ( pre_log == 0 ) { pre_log = 0.001f; } float l = logf(pre_log) * _lensEffect; float new_r = expf( l ) * _radius; if (vect.getLength() > 0) { vect.normalize(); Vec2 new_vect = vect * new_r; v.z += (_concave ? -1.0f : 1.0f) * new_vect.getLength() * _lensEffect; } } setVertex(Vec2(i, j), v); } } _dirty = false; } } // implementation of Ripple3D Ripple3D* Ripple3D::create(float duration, const Size& gridSize, const Vec2& position, float radius, unsigned int waves, float amplitude) { Ripple3D *action = new (std::nothrow) Ripple3D(); if (action) { if (action->initWithDuration(duration, gridSize, position, radius, waves, amplitude)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Ripple3D::initWithDuration(float duration, const Size& gridSize, const Vec2& position, float radius, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { setPosition(position); _radius = radius; _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } void Ripple3D::setPosition(const Vec2& position) { _position = position; } Ripple3D* Ripple3D::clone() const { // no copy constructor auto a = new (std::nothrow) Ripple3D(); a->initWithDuration(_duration, _gridSize, _position, _radius, _waves, _amplitude); a->autorelease(); return a; } void Ripple3D::update(float time) { int i, j; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vec3 v = getOriginalVertex(Vec2(i, j)); Vec2 vect = _position - Vec2(v.x,v.y); float r = vect.getLength(); if (r < _radius) { r = _radius - r; float rate = powf(r / _radius, 2); v.z += (sinf( time*(float)M_PI * _waves * 2 + r * 0.1f) * _amplitude * _amplitudeRate * rate); } setVertex(Vec2(i, j), v); } } } // implementation of Shaky3D Shaky3D* Shaky3D::create(float duration, const Size& gridSize, int range, bool shakeZ) { Shaky3D *action = new (std::nothrow) Shaky3D(); if (action) { if (action->initWithDuration(duration, gridSize, range, shakeZ)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Shaky3D::initWithDuration(float duration, const Size& gridSize, int range, bool shakeZ) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _randrange = range; _shakeZ = shakeZ; return true; } return false; } Shaky3D* Shaky3D::clone() const { // no copy constructor auto a = new (std::nothrow) Shaky3D(); a->initWithDuration(_duration, _gridSize, _randrange, _shakeZ); a->autorelease(); return a; } void Shaky3D::update(float time) { CC_UNUSED_PARAM(time); int i, j; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vec3 v = getOriginalVertex(Vec2(i ,j)); v.x += (rand() % (_randrange*2)) - _randrange; v.y += (rand() % (_randrange*2)) - _randrange; if (_shakeZ) { v.z += (rand() % (_randrange*2)) - _randrange; } setVertex(Vec2(i, j), v); } } } // implementation of Liquid Liquid* Liquid::create(float duration, const Size& gridSize, unsigned int waves, float amplitude) { Liquid *action = new (std::nothrow) Liquid(); if (action) { if (action->initWithDuration(duration, gridSize, waves, amplitude)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Liquid::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } Liquid* Liquid::clone() const { // no copy constructor auto a = new (std::nothrow) Liquid(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude); a->autorelease(); return a; } void Liquid::update(float time) { int i, j; for (i = 1; i < _gridSize.width; ++i) { for (j = 1; j < _gridSize.height; ++j) { Vec3 v = getOriginalVertex(Vec2(i, j)); v.x = (v.x + (sinf(time * (float)M_PI * _waves * 2 + v.x * .01f) * _amplitude * _amplitudeRate)); v.y = (v.y + (sinf(time * (float)M_PI * _waves * 2 + v.y * .01f) * _amplitude * _amplitudeRate)); setVertex(Vec2(i, j), v); } } } // implementation of Waves Waves* Waves::create(float duration, const Size& gridSize, unsigned int waves, float amplitude, bool horizontal, bool vertical) { Waves *action = new (std::nothrow) Waves(); if (action) { if (action->initWithDuration(duration, gridSize, waves, amplitude, horizontal, vertical)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Waves::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude, bool horizontal, bool vertical) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; _horizontal = horizontal; _vertical = vertical; return true; } return false; } Waves* Waves::clone() const { // no copy constructor auto a = new (std::nothrow) Waves(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude, _horizontal, _vertical); a->autorelease(); return a; } void Waves::update(float time) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vec3 v = getOriginalVertex(Vec2(i, j)); if (_vertical) { v.x = (v.x + (sinf(time * (float)M_PI * _waves * 2 + v.y * .01f) * _amplitude * _amplitudeRate)); } if (_horizontal) { v.y = (v.y + (sinf(time * (float)M_PI * _waves * 2 + v.x * .01f) * _amplitude * _amplitudeRate)); } setVertex(Vec2(i, j), v); } } } // implementation of Twirl Twirl* Twirl::create(float duration, const Size& gridSize, Vec2 position, unsigned int twirls, float amplitude) { Twirl *action = new (std::nothrow) Twirl(); if (action) { if (action->initWithDuration(duration, gridSize, position, twirls, amplitude)) { action->autorelease(); } else { CC_SAFE_RELEASE_NULL(action); } } return action; } bool Twirl::initWithDuration(float duration, const Size& gridSize, Vec2 position, unsigned int twirls, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { setPosition(position); _twirls = twirls; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } void Twirl::setPosition(const Vec2& position) { _position = position; } Twirl *Twirl::clone() const { // no copy constructor auto a = new (std::nothrow) Twirl(); a->initWithDuration(_duration, _gridSize, _position, _twirls, _amplitude); a->autorelease(); return a; } void Twirl::update(float time) { int i, j; Vec2 c = _position; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vec3 v = getOriginalVertex(Vec2(i ,j)); Vec2 avg = Vec2(i-(_gridSize.width/2.0f), j-(_gridSize.height/2.0f)); float r = avg.getLength(); float amp = 0.1f * _amplitude * _amplitudeRate; float a = r * cosf( (float)M_PI/2.0f + time * (float)M_PI * _twirls * 2 ) * amp; Vec2 d = Vec2( sinf(a) * (v.y-c.y) + cosf(a) * (v.x-c.x), cosf(a) * (v.y-c.y) - sinf(a) * (v.x-c.x)); v.x = c.x + d.x; v.y = c.y + d.y; setVertex(Vec2(i ,j), v); } } } NS_CC_END