/**************************************************************************** Copyright (c) 2010-2011 cocos2d-x.org Copyright (c) 2007 Scott Lembcke Copyright (c) 2010 Lam Pham http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #ifndef __SUPPORT_CGPOINTEXTENSION_H__ #define __SUPPORT_CGPOINTEXTENSION_H__ /** @file CCPoint extensions based on Chipmunk's cpVect file. These extensions work both with CCPoint and cpVect. The "ccp" prefix means: "CoCos2d Point" Examples: - ccpAdd( ccp(1,1), ccp(2,2) ); // preferred cocos2d way - ccpAdd( CCPointMake(1,1), CCPointMake(2,2) ); // also ok but more verbose - cpvadd( cpv(1,1), cpv(2,2) ); // way of the chipmunk - ccpAdd( cpv(1,1), cpv(2,2) ); // mixing chipmunk and cocos2d (avoid) - cpvadd( CCPointMake(1,1), CCPointMake(2,2) ); // mixing chipmunk and CG (avoid) */ #include "CCGeometry.h" #include namespace cocos2d { /** Helper macro that creates a CCPoint @return CCPoint @since v0.7.2 */ #define ccp(__X__,__Y__) CCPointMake((float)__X__, (float)__Y__) /** Returns opposite of point. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpNeg(const CCPoint v) { return ccp(-v.x, -v.y); } /** Calculates sum of two points. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpAdd(const CCPoint v1, const CCPoint v2) { return ccp(v1.x + v2.x, v1.y + v2.y); } /** Calculates difference of two points. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpSub(const CCPoint v1, const CCPoint v2) { return ccp(v1.x - v2.x, v1.y - v2.y); } /** Returns point multiplied by given factor. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpMult(const CCPoint v, const CGFloat s) { return ccp(v.x*s, v.y*s); } /** Calculates midpoint between two points. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpMidpoint(const CCPoint v1, const CCPoint v2) { return ccpMult(ccpAdd(v1, v2), 0.5f); } /** Calculates dot product of two points. @return CGFloat @since v0.7.2 */ static inline CGFloat ccpDot(const CCPoint v1, const CCPoint v2) { return v1.x*v2.x + v1.y*v2.y; } /** Calculates cross product of two points. @return CGFloat @since v0.7.2 */ static inline CGFloat ccpCross(const CCPoint v1, const CCPoint v2) { return v1.x*v2.y - v1.y*v2.x; } /** Calculates perpendicular of v, rotated 90 degrees counter-clockwise -- cross(v, perp(v)) >= 0 @return CCPoint @since v0.7.2 */ static inline CCPoint ccpPerp(const CCPoint v) { return ccp(-v.y, v.x); } /** Calculates perpendicular of v, rotated 90 degrees clockwise -- cross(v, rperp(v)) <= 0 @return CCPoint @since v0.7.2 */ static inline CCPoint ccpRPerp(const CCPoint v) { return ccp(v.y, -v.x); } /** Calculates the projection of v1 over v2. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpProject(const CCPoint v1, const CCPoint v2) { return ccpMult(v2, ccpDot(v1, v2)/ccpDot(v2, v2)); } /** Rotates two points. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpRotate(const CCPoint v1, const CCPoint v2) { return ccp(v1.x*v2.x - v1.y*v2.y, v1.x*v2.y + v1.y*v2.x); } /** Unrotates two points. @return CCPoint @since v0.7.2 */ static inline CCPoint ccpUnrotate(const CCPoint v1, const CCPoint v2) { return ccp(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y); } /** Calculates the square length of a CCPoint (not calling sqrt() ) @return CGFloat @since v0.7.2 */ static inline CGFloat ccpLengthSQ(const CCPoint v) { return ccpDot(v, v); } /** Calculates distance between point an origin @return CGFloat @since v0.7.2 */ CGFloat CC_DLL ccpLength(const CCPoint v); /** Calculates the distance between two points @return CGFloat @since v0.7.2 */ CGFloat CC_DLL ccpDistance(const CCPoint v1, const CCPoint v2); /** Returns point multiplied to a length of 1. @return CCPoint @since v0.7.2 */ CCPoint CC_DLL ccpNormalize(const CCPoint v); /** Converts radians to a normalized vector. @return CCPoint @since v0.7.2 */ CCPoint CC_DLL ccpForAngle(const CGFloat a); /** Converts a vector to radians. @return CGFloat @since v0.7.2 */ CGFloat CC_DLL ccpToAngle(const CCPoint v); /** Clamp a value between from and to. @since v0.99.1 */ float CC_DLL clampf(float value, float min_inclusive, float max_inclusive); /** Clamp a point between from and to. @since v0.99.1 */ CCPoint CC_DLL ccpClamp(CCPoint p, CCPoint from, CCPoint to); /** Quickly convert CCSize to a CCPoint @since v0.99.1 */ CCPoint CC_DLL ccpFromSize(CCSize s); /** Run a math operation function on each point component * absf, fllorf, ceilf, roundf * any function that has the signature: float func(float); * For example: let's try to take the floor of x,y * ccpCompOp(p,floorf); @since v0.99.1 */ CCPoint CC_DLL ccpCompOp(CCPoint p, float (*opFunc)(float)); /** Linear Interpolation between two points a and b @returns alpha == 0 ? a alpha == 1 ? b otherwise a value between a..b @since v0.99.1 */ CCPoint CC_DLL ccpLerp(CCPoint a, CCPoint b, float alpha); /** @returns if points have fuzzy equality which means equal with some degree of variance. @since v0.99.1 */ bool CC_DLL ccpFuzzyEqual(CCPoint a, CCPoint b, float variance); /** Multiplies a nd b components, a.x*b.x, a.y*b.y @returns a component-wise multiplication @since v0.99.1 */ CCPoint CC_DLL ccpCompMult(CCPoint a, CCPoint b); /** @returns the signed angle in radians between two vector directions @since v0.99.1 */ float CC_DLL ccpAngleSigned(CCPoint a, CCPoint b); /** @returns the angle in radians between two vector directions @since v0.99.1 */ float CC_DLL ccpAngle(CCPoint a, CCPoint b); /** Rotates a point counter clockwise by the angle around a pivot @param v is the point to rotate @param pivot is the pivot, naturally @param angle is the angle of rotation cw in radians @returns the rotated point @since v0.99.1 */ CCPoint CC_DLL ccpRotateByAngle(CCPoint v, CCPoint pivot, float angle); /** A general line-line intersection test @param p1 is the startpoint for the first line P1 = (p1 - p2) @param p2 is the endpoint for the first line P1 = (p1 - p2) @param p3 is the startpoint for the second line P2 = (p3 - p4) @param p4 is the endpoint for the second line P2 = (p3 - p4) @param s is the range for a hitpoint in P1 (pa = p1 + s*(p2 - p1)) @param t is the range for a hitpoint in P3 (pa = p2 + t*(p4 - p3)) @return bool indicating successful intersection of a line note that to truly test intersection for segments we have to make sure that s & t lie within [0..1] and for rays, make sure s & t > 0 the hit point is p3 + t * (p4 - p3); the hit point also is p1 + s * (p2 - p1); @since v0.99.1 */ bool CC_DLL ccpLineIntersect(CCPoint p1, CCPoint p2, CCPoint p3, CCPoint p4, float *s, float *t); }//namespace cocos2d #endif // __SUPPORT_CGPOINTEXTENSION_H__