/**************************************************************************** Copyright (c) 2014-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. https://axmolengine.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "3d/Mesh.h" #include "3d/MeshSkin.h" #include "3d/Skeleton3D.h" #include "3d/MeshVertexIndexData.h" #include "3d/VertexAttribBinding.h" #include "2d/Light.h" #include "2d/Scene.h" #include "base/EventDispatcher.h" #include "base/Director.h" #include "base/Configuration.h" #include "renderer/TextureCache.h" #include "renderer/Material.h" #include "renderer/Technique.h" #include "renderer/Pass.h" #include "renderer/Renderer.h" #include "renderer/backend/Buffer.h" #include "renderer/backend/Program.h" #include "renderer/RenderConsts.h" #include "math/Mat4.h" using namespace std; NS_AX_BEGIN // Helpers // sampler uniform names, only diffuse and normal texture are supported for now std::string s_uniformSamplerName[] = { "", // NTextureData::Usage::Unknown, "", // NTextureData::Usage::None "", // NTextureData::Usage::Diffuse "", // NTextureData::Usage::Emissive "", // NTextureData::Usage::Ambient "", // NTextureData::Usage::Specular "", // NTextureData::Usage::Shininess "u_normalTex", // NTextureData::Usage::Normal "", // NTextureData::Usage::Bump "", // NTextureData::Usage::Transparency "", // NTextureData::Usage::Reflection }; // helpers void Mesh::resetLightUniformValues() { const auto& conf = Configuration::getInstance(); constexpr int maxDirLight = AX_MAX_DIRECTIONAL_LIGHT; constexpr int maxPointLight = AX_MAX_POINT_LIGHT; constexpr int maxSpotLight = AX_MAX_SPOT_LIGHT; _dirLightUniformColorValues.assign(maxDirLight, Vec3::ZERO); _dirLightUniformDirValues.assign(maxDirLight, Vec3::ZERO); _pointLightUniformColorValues.assign(maxPointLight, Vec3::ZERO); _pointLightUniformPositionValues.assign(maxPointLight, Vec3::ZERO); _pointLightUniformRangeInverseValues.assign(maxPointLight, 0.0f); _spotLightUniformColorValues.assign(maxSpotLight, Vec3::ZERO); _spotLightUniformPositionValues.assign(maxSpotLight, Vec3::ZERO); // TODO It's strange that init _spotLightUniformDirValues to zeros will cause no light effects on iPhone6 and // iPhone6s, but works well on iPhoneX fix no light effects on iPhone6 and iPhone6s _spotLightUniformDirValues.assign(maxSpotLight, Vec3(FLT_EPSILON, 0.0f, 0.0f)); _spotLightUniformInnerAngleCosValues.assign(maxSpotLight, 1.0f); _spotLightUniformOuterAngleCosValues.assign(maxSpotLight, 0.0f); _spotLightUniformRangeInverseValues.assign(maxSpotLight, 0.0f); } void Mesh::enableInstancing(bool instance, int count) { _instancing = instance; _instanceCount = count; } void Mesh::setInstanceCount(int count) { AXASSERT(_instancing, "Instancing should be enabled on this mesh."); _instanceCount = count; } void Mesh::addInstanceChild(Node* child) { AX_SAFE_RETAIN(child); _instances.push_back(child); _instanceTransformDirty = true; if (_instances.size() > _instanceCount) { _instanceCount *= 2; _instanceTransformBufferDirty = true; } } void Mesh::shrinkToFitInstances() { if (_instanceCount > _instances.size()) { _instanceCount = _instances.size(); _instanceTransformBufferDirty = true; } } void Mesh::rebuildInstances() { _instanceTransformDirty = true; } void Mesh::setDynamicInstancing(bool dynamic) { _dynamicInstancing = dynamic; } Mesh::Mesh() : _skin(nullptr) , _visible(true) , _instancing(false) , _instanceTransformBuffer(nullptr) , _instanceTransformBufferDirty(false) , _instanceCount(0) , _dynamicInstancing(false) , _instanceMatrixCache(nullptr) , meshIndexFormat(CustomCommand::IndexFormat::U_SHORT) , _meshIndexData(nullptr) , _blend(BlendFunc::ALPHA_NON_PREMULTIPLIED) , _blendDirty(true) , _material(nullptr) , _texFile("") {} Mesh::~Mesh() { for (auto&& tex : _textures) AX_SAFE_RELEASE(tex.second); for (auto&& ins : _instances) AX_SAFE_RELEASE(ins); AX_SAFE_RELEASE(_skin); AX_SAFE_RELEASE(_meshIndexData); AX_SAFE_RELEASE(_material); AX_SAFE_RELEASE(_instanceTransformBuffer); AX_SAFE_DELETE_ARRAY(_instanceMatrixCache); } backend::Buffer* Mesh::getVertexBuffer() const { return _meshIndexData->getVertexBuffer(); } bool Mesh::hasVertexAttrib(shaderinfos::VertexKey attrib) const { return _meshIndexData->getMeshVertexData()->hasVertexAttrib(attrib); } ssize_t Mesh::getMeshVertexAttribCount() const { return _meshIndexData->getMeshVertexData()->getMeshVertexAttribCount(); } const MeshVertexAttrib& Mesh::getMeshVertexAttribute(int idx) { return _meshIndexData->getMeshVertexData()->getMeshVertexAttrib(idx); } int Mesh::getVertexSizeInBytes() const { return static_cast(_meshIndexData->getMeshVertexData()->getSizePerVertex()); } Mesh* Mesh::create(const std::vector& positions, const std::vector& normals, const std::vector& texs, const IndexArray& indices) { int perVertexSizeInFloat = 0; std::vector vertices; std::vector attribs; MeshVertexAttrib att; att.type = backend::VertexFormat::FLOAT3; attribs.reserve(3); size_t hasNormal = 0; size_t hasTexCoord = 0; if (!positions.empty()) { perVertexSizeInFloat += 3; att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_POSITION; attribs.emplace_back(att); } if (!normals.empty()) { perVertexSizeInFloat += 3; att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_NORMAL; attribs.emplace_back(att); hasNormal = 1; } if (!texs.empty()) { perVertexSizeInFloat += 2; att.type = backend::VertexFormat::FLOAT2; att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_TEX_COORD; attribs.emplace_back(att); hasTexCoord = 1; } // position, normal, texCoordinate into _vertexs size_t vertexNum = positions.size() / 3; vertices.reserve(positions.size() + hasNormal * 3 + hasTexCoord * 2); for (size_t i = 0; i < vertexNum; i++) { vertices.emplace_back(positions[i * 3]); vertices.emplace_back(positions[i * 3 + 1]); vertices.emplace_back(positions[i * 3 + 2]); if (hasNormal) { vertices.emplace_back(normals[i * 3]); vertices.emplace_back(normals[i * 3 + 1]); vertices.emplace_back(normals[i * 3 + 2]); } if (hasTexCoord) { vertices.emplace_back(texs[i * 2]); vertices.emplace_back(texs[i * 2 + 1]); } } return create(vertices, perVertexSizeInFloat, indices, attribs); } Mesh* Mesh::create(const std::vector& vertices, int /*perVertexSizeInFloat*/, const IndexArray& indices, const std::vector& attribs) { MeshData meshdata; meshdata.attribs = attribs; meshdata.vertex = vertices; meshdata.subMeshIndices.emplace_back(indices); meshdata.subMeshIds.emplace_back(""); auto meshvertexdata = MeshVertexData::create(meshdata, indices.format()); auto indexData = meshvertexdata->getMeshIndexDataByIndex(0); auto mesh = create("", indexData); mesh->setIndexFormat(indices.format()); return mesh; } Mesh* Mesh::create(std::string_view name, MeshIndexData* indexData, MeshSkin* skin) { auto state = new Mesh(); state->autorelease(); state->bindMeshCommand(); state->_name = name; state->setMeshIndexData(indexData); state->setSkin(skin); return state; } void Mesh::setVisible(bool visible) { if (_visible != visible) { _visible = visible; if (_visibleChanged) _visibleChanged(); } } bool Mesh::isVisible() const { return _visible; } void Mesh::setTexture(std::string_view texPath) { _texFile = texPath; auto tex = Director::getInstance()->getTextureCache()->addImage(texPath); setTexture(tex, NTextureData::Usage::Diffuse); } void Mesh::setTexture(Texture2D* tex) { setTexture(tex, NTextureData::Usage::Diffuse); } void Mesh::setTexture(Texture2D* tex, NTextureData::Usage usage, bool cacheFileName) { // Texture must be saved for future use // it doesn't matter if the material is already set or not // This functionality is added for compatibility issues if (tex == nullptr) tex = Director::getInstance()->getTextureCache()->getDummyTexture(); AX_SAFE_RETAIN(tex); AX_SAFE_RELEASE(_textures[usage]); _textures[usage] = tex; if (usage == NTextureData::Usage::Diffuse) { if (_material) { auto technique = _material->_currentTechnique; for (auto&& pass : technique->_passes) { pass->setUniformTexture(0, tex->getBackendTexture()); } } bindMeshCommand(); if (cacheFileName) _texFile = tex->getPath(); } else if (usage == NTextureData::Usage::Normal) // currently only diffuse and normal are supported { if (_material) { auto technique = _material->_currentTechnique; for (auto&& pass : technique->_passes) { pass->setUniformNormTexture(1, tex->getBackendTexture()); } } } } void Mesh::setTexture(std::string_view texPath, NTextureData::Usage usage) { auto tex = Director::getInstance()->getTextureCache()->addImage(texPath); setTexture(tex, usage); } Texture2D* Mesh::getTexture() const { return _textures.at(NTextureData::Usage::Diffuse); } Texture2D* Mesh::getTexture(NTextureData::Usage usage) { return _textures[usage]; } void Mesh::setMaterial(Material* material) { if (_material != material) { AX_SAFE_RELEASE(_material); _material = material; AX_SAFE_RETAIN(_material); } _meshCommands.clear(); if (_material) { for (auto&& technique : _material->getTechniques()) { // allocate MeshCommand vector for technique // allocate MeshCommand for each pass auto& list = _meshCommands[technique->getName()]; list.resize(technique->getPasses().size()); int i = 0; for (auto&& pass : technique->getPasses()) { #ifdef _AX_DEBUG // make it crashed when missing attribute data if (_material->getTechnique()->getName().compare(technique->getName()) == 0) { auto program = pass->getProgramState()->getProgram(); auto& attributes = program->getActiveAttributes(); auto meshVertexData = _meshIndexData->getMeshVertexData(); auto attributeCount = meshVertexData->getMeshVertexAttribCount(); //AXASSERT(attributes.size() <= attributeCount, "missing attribute data"); } #endif // TODO auto vertexAttribBinding = VertexAttribBinding::create(_meshIndexData, pass, &list[i]); pass->setVertexAttribBinding(vertexAttribBinding); i += 1; } } _meshIndexData->setPrimitiveType(material->getPrimitiveType()); } // Was the texture set before the GLProgramState ? Set it for (auto&& tex : _textures) setTexture(tex.second, tex.first); if (_blendDirty) setBlendFunc(_blend); bindMeshCommand(); } Material* Mesh::getMaterial() const { return _material; } void Mesh::draw(Renderer* renderer, float globalZOrder, const Mat4& transform, uint32_t flags, unsigned int lightMask, const Vec4& color, bool forceDepthWrite, bool wireframe) { if (!isVisible()) return; bool isTransparent = (_material->isTransparent() || color.w < 1.f); float globalZ = isTransparent ? 0 : globalZOrder; if (isTransparent) flags |= Node::FLAGS_RENDER_AS_3D; if (_instancing && _instanceCount > 0) { if (!_instanceTransformBuffer || _instanceTransformBufferDirty) { AX_SAFE_RELEASE(_instanceTransformBuffer); _instanceTransformBuffer = backend::Device::getInstance()->newBuffer( _instanceCount * 64, backend::BufferType::VERTEX, backend::BufferUsage::DYNAMIC); _instanceMatrixCache = new float[_instanceCount * 16]; for (int i = 0; i < _instanceCount; i++) { _instanceMatrixCache[i * 16 + 0] = 1.0f; _instanceMatrixCache[i * 16 + 1] = 0.0f; _instanceMatrixCache[i * 16 + 2] = 0.0f; _instanceMatrixCache[i * 16 + 3] = 0.0f; _instanceMatrixCache[i * 16 + 4] = 0.0f; _instanceMatrixCache[i * 16 + 5] = 1.0f; _instanceMatrixCache[i * 16 + 6] = 0.0f; _instanceMatrixCache[i * 16 + 7] = 0.0f; _instanceMatrixCache[i * 16 + 8] = 0.0f; _instanceMatrixCache[i * 16 + 9] = 0.0f; _instanceMatrixCache[i * 16 + 10] = 1.0f; _instanceMatrixCache[i * 16 + 11] = 0.0f; _instanceMatrixCache[i * 16 + 12] = 0.0f; _instanceMatrixCache[i * 16 + 13] = 0.0f; _instanceMatrixCache[i * 16 + 14] = 0.0f; _instanceMatrixCache[i * 16 + 15] = 1.0f; } // Fill the buffer with identity matrix. _instanceTransformBuffer->updateData(_instanceMatrixCache, _instanceCount * 64); _instanceTransformBufferDirty = false; } if (_instanceTransformDirty || _dynamicInstancing) { _instanceTransformDirty = false; int memOffset = 0; for (auto& _ : _instances) { auto& mat = _->getNodeToParentTransform(); std::copy(mat.m, mat.m + 16, _instanceMatrixCache + 16 * memOffset++); } _instanceTransformBuffer->updateSubData(_instanceMatrixCache, 0, _instanceCount * 64); } } // TODO // _meshCommand.init(globalZ, // _material, // getVertexBuffer(), // getIndexBuffer(), // getPrimitiveType(), // getIndexFormat(), // getIndexCount(), // transform, // flags); if (isTransparent && !forceDepthWrite) _material->getStateBlock().setDepthWrite(false); else _material->getStateBlock().setDepthWrite(true); // set default uniforms for Mesh // 'u_color' and others const auto scene = Director::getInstance()->getRunningScene(); auto technique = _material->_currentTechnique; for (const auto pass : technique->_passes) { pass->setUniformColor(&color, sizeof(color)); if (_skin) pass->setUniformMatrixPalette(_skin->getMatrixPalette(), _skin->getMatrixPaletteSizeInBytes()); if (scene && !scene->getLights().empty()) { setLightUniforms(pass, scene, color, lightMask); } } auto& commands = _meshCommands[technique->getName()]; for (auto&& command : commands) { command.init(globalZ, transform); command.setSkipBatching(isTransparent); command.setTransparent(isTransparent); command.set3D(!_material->isForce2DQueue()); command.setWireframe(wireframe); if (_instancing && _instances.size() > 0) { command.setDrawType(CustomCommand::DrawType::ELEMENT_INSTANCE); command.setInstanceBuffer(_instanceTransformBuffer, _instances.size()); } else if (_instancing) return; } _meshIndexData->setPrimitiveType(_material->_drawPrimitive); _material->draw(commands.data(), globalZ, getVertexBuffer(), getIndexBuffer(), getPrimitiveType(), getIndexFormat(), static_cast(getIndexCount()), transform); } void Mesh::setSkin(MeshSkin* skin) { if (_skin != skin) { AX_SAFE_RETAIN(skin); AX_SAFE_RELEASE(_skin); _skin = skin; calculateAABB(); } } void Mesh::setMeshIndexData(MeshIndexData* subMesh) { if (_meshIndexData != subMesh) { AX_SAFE_RETAIN(subMesh); AX_SAFE_RELEASE(_meshIndexData); _meshIndexData = subMesh; calculateAABB(); bindMeshCommand(); } } void Mesh::setProgramState(backend::ProgramState* programState) { auto material = Material::createWithProgramState(programState); if (_material) { material->setStateBlock(_material->getStateBlock()); } setMaterial(material); } backend::ProgramState* Mesh::getProgramState() const { return _material ? _material->_currentTechnique->_passes.at(0)->getProgramState() : nullptr; } void Mesh::calculateAABB() { if (_meshIndexData) { _aabb = _meshIndexData->getAABB(); if (_skin) { // get skin root Bone3D* root = nullptr; Mat4 invBindPose; if (_skin->_skinBones.size()) { root = _skin->_skinBones.at(0); while (root) { auto parent = root->getParentBone(); bool parentInSkinBone = false; for (const auto& bone : _skin->_skinBones) { if (bone == parent) { parentInSkinBone = true; break; } } if (!parentInSkinBone) break; root = parent; } } if (root) { _aabb.transform(root->getWorldMat() * _skin->getInvBindPose(root)); } } } } void Mesh::bindMeshCommand() { if (_material && _meshIndexData) { auto& stateBlock = _material->getStateBlock(); stateBlock.setCullFace(true); stateBlock.setDepthTest(true); if (_blend.src != backend::BlendFactor::ONE && _blend.dst != backend::BlendFactor::ONE) stateBlock.setBlend(true); } } void Mesh::setLightUniforms(Pass* pass, Scene* scene, const Vec4& color, unsigned int lightmask) { AXASSERT(pass, "Invalid Pass"); AXASSERT(scene, "Invalid scene"); const auto& conf = Configuration::getInstance(); constexpr int maxDirLight = AX_MAX_DIRECTIONAL_LIGHT; constexpr int maxPointLight = AX_MAX_POINT_LIGHT; constexpr int maxSpotLight = AX_MAX_SPOT_LIGHT; auto& lights = scene->getLights(); auto bindings = pass->getVertexAttributeBinding(); if (bindings && bindings->hasAttribute(shaderinfos::VertexKey::VERTEX_ATTRIB_NORMAL)) { resetLightUniformValues(); int enabledDirLightNum = 0; int enabledPointLightNum = 0; int enabledSpotLightNum = 0; Vec3 ambientColor; for (const auto& light : lights) { bool useLight = light->isEnabled() && ((unsigned int)light->getLightFlag() & lightmask); if (useLight) { float intensity = light->getIntensity(); switch (light->getLightType()) { case LightType::DIRECTIONAL: { if (enabledDirLightNum < maxDirLight) { auto dirLight = static_cast(light); Vec3 dir = dirLight->getDirectionInWorld(); dir.normalize(); const Color3B& col = dirLight->getDisplayedColor(); _dirLightUniformColorValues[enabledDirLightNum].set( col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity); _dirLightUniformDirValues[enabledDirLightNum] = dir; ++enabledDirLightNum; } } break; case LightType::POINT: { if (enabledPointLightNum < maxPointLight) { auto pointLight = static_cast(light); Mat4 mat = pointLight->getNodeToWorldTransform(); const Color3B& col = pointLight->getDisplayedColor(); _pointLightUniformColorValues[enabledPointLightNum].set( col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity); _pointLightUniformPositionValues[enabledPointLightNum].set(mat.m[12], mat.m[13], mat.m[14]); _pointLightUniformRangeInverseValues[enabledPointLightNum] = 1.0f / pointLight->getRange(); ++enabledPointLightNum; } } break; case LightType::SPOT: { if (enabledSpotLightNum < maxSpotLight) { auto spotLight = static_cast(light); Vec3 dir = spotLight->getDirectionInWorld(); dir.normalize(); Mat4 mat = light->getNodeToWorldTransform(); const Color3B& col = spotLight->getDisplayedColor(); _spotLightUniformColorValues[enabledSpotLightNum].set( col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity); _spotLightUniformPositionValues[enabledSpotLightNum].set(mat.m[12], mat.m[13], mat.m[14]); _spotLightUniformDirValues[enabledSpotLightNum] = dir; _spotLightUniformInnerAngleCosValues[enabledSpotLightNum] = spotLight->getCosInnerAngle(); _spotLightUniformOuterAngleCosValues[enabledSpotLightNum] = spotLight->getCosOuterAngle(); _spotLightUniformRangeInverseValues[enabledSpotLightNum] = 1.0f / spotLight->getRange(); ++enabledSpotLightNum; } } break; case LightType::AMBIENT: { auto ambLight = static_cast(light); const Color3B& col = ambLight->getDisplayedColor(); ambientColor.add(col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity); } break; default: break; } } } if (0 < maxDirLight) { pass->setUniformDirLightColor(&_dirLightUniformColorValues[0], _dirLightUniformColorValues.size() * sizeof(_dirLightUniformColorValues[0])); pass->setUniformDirLightDir(&_dirLightUniformDirValues[0], _dirLightUniformDirValues.size() * sizeof(_dirLightUniformDirValues[0])); } if (0 < maxPointLight) { pass->setUniformPointLightColor( &_pointLightUniformColorValues[0], _pointLightUniformColorValues.size() * sizeof(_pointLightUniformColorValues[0])); pass->setUniformPointLightPosition( &_pointLightUniformPositionValues[0], _pointLightUniformPositionValues.size() * sizeof(_pointLightUniformPositionValues[0])); pass->setUniformPointLightRangeInverse( &_pointLightUniformRangeInverseValues[0], _pointLightUniformRangeInverseValues.size() * sizeof(_pointLightUniformRangeInverseValues[0])); } if (0 < maxSpotLight) { pass->setUniformSpotLightColor( &_spotLightUniformColorValues[0], _spotLightUniformColorValues.size() * sizeof(_spotLightUniformColorValues[0])); pass->setUniformSpotLightPosition( &_spotLightUniformPositionValues[0], _spotLightUniformPositionValues.size() * sizeof(_spotLightUniformPositionValues[0])); pass->setUniformSpotLightDir(&_spotLightUniformDirValues[0], _spotLightUniformDirValues.size() * sizeof(_spotLightUniformDirValues[0])); pass->setUniformSpotLightInnerAngleCos( &_spotLightUniformInnerAngleCosValues[0], _spotLightUniformInnerAngleCosValues.size() * sizeof(_spotLightUniformInnerAngleCosValues[0])); pass->setUniformSpotLightOuterAngleCos( &_spotLightUniformOuterAngleCosValues[0], _spotLightUniformOuterAngleCosValues.size() * sizeof(_spotLightUniformOuterAngleCosValues[0])); pass->setUniformSpotLightRangeInverse( &_spotLightUniformRangeInverseValues[0], _spotLightUniformRangeInverseValues.size() * sizeof(_spotLightUniformRangeInverseValues[0])); } auto ambientLightColor = Vec3(ambientColor.x, ambientColor.y, ambientColor.z); pass->setUniformAmbientLigthColor(&ambientLightColor, sizeof(ambientLightColor)); } else // normal does not exist { Vec3 ambient(0.0f, 0.0f, 0.0f); bool hasAmbient = false; for (const auto& light : lights) { if (light->getLightType() == LightType::AMBIENT) { bool useLight = light->isEnabled() && ((unsigned int)light->getLightFlag() & lightmask); if (useLight) { hasAmbient = true; const Color3B& col = light->getDisplayedColor(); ambient.x += col.r * light->getIntensity(); ambient.y += col.g * light->getIntensity(); ambient.z += col.b * light->getIntensity(); } } } if (hasAmbient) { ambient.x /= 255.f; ambient.y /= 255.f; ambient.z /= 255.f; // override the uniform value of u_color using the calculated color auto fcolor = Vec4(color.x * ambient.x, color.y * ambient.y, color.z * ambient.z, color.w); pass->setUniformColor(&fcolor, sizeof(fcolor)); } } } void Mesh::setBlendFunc(const BlendFunc& blendFunc) { // Blend must be saved for future use // it doesn't matter if the material is already set or not // This functionality is added for compatibility issues if (_blend != blendFunc) { _blendDirty = true; _blend = blendFunc; } if (_material) { // TODO set blend to Pass _material->getStateBlock().setBlendFunc(blendFunc); bindMeshCommand(); } } const BlendFunc& Mesh::getBlendFunc() const { // return _material->_currentTechnique->_passes.at(0)->getBlendFunc(); return _blend; } CustomCommand::PrimitiveType Mesh::getPrimitiveType() const { return _meshIndexData->getPrimitiveType(); } ssize_t Mesh::getIndexCount() const { return _meshIndexData->getIndexBuffer()->getSize() / IndexArray::formatToStride(meshIndexFormat); } CustomCommand::IndexFormat Mesh::getIndexFormat() const { return meshIndexFormat; } void Mesh::setIndexFormat(CustomCommand::IndexFormat indexFormat) { meshIndexFormat = indexFormat; } backend::Buffer* Mesh::getIndexBuffer() const { return _meshIndexData->getIndexBuffer(); } NS_AX_END