/* * Copyright (c) 2007 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Pulley: // length1 = norm(p1 - s1) // length2 = norm(p2 - s2) // C0 = (length1 + ratio * length2)_initial // C = C0 - (length1 + ratio * length2) // u1 = (p1 - s1) / norm(p1 - s1) // u2 = (p2 - s2) / norm(p2 - s2) // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2)) // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)] // K = J * invM * JT // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2) void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& groundA, const b2Vec2& groundB, const b2Vec2& anchorA, const b2Vec2& anchorB, float32 r) { bodyA = bA; bodyB = bB; groundAnchorA = groundA; groundAnchorB = groundB; localAnchorA = bodyA->GetLocalPoint(anchorA); localAnchorB = bodyB->GetLocalPoint(anchorB); b2Vec2 dA = anchorA - groundA; lengthA = dA.Length(); b2Vec2 dB = anchorB - groundB; lengthB = dB.Length(); ratio = r; b2Assert(ratio > b2_epsilon); } b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def) : b2Joint(def) { m_groundAnchorA = def->groundAnchorA; m_groundAnchorB = def->groundAnchorB; m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_lengthA = def->lengthA; m_lengthB = def->lengthB; b2Assert(def->ratio != 0.0f); m_ratio = def->ratio; m_constant = def->lengthA + m_ratio * def->lengthB; m_impulse = 0.0f; } void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); // Get the pulley axes. m_uA = cA + m_rA - m_groundAnchorA; m_uB = cB + m_rB - m_groundAnchorB; float32 lengthA = m_uA.Length(); float32 lengthB = m_uB.Length(); if (lengthA > 10.0f * b2_linearSlop) { m_uA *= 1.0f / lengthA; } else { m_uA.SetZero(); } if (lengthB > 10.0f * b2_linearSlop) { m_uB *= 1.0f / lengthB; } else { m_uB.SetZero(); } // Compute effective mass. float32 ruA = b2Cross(m_rA, m_uA); float32 ruB = b2Cross(m_rB, m_uB); float32 mA = m_invMassA + m_invIA * ruA * ruA; float32 mB = m_invMassB + m_invIB * ruB * ruB; m_mass = mA + m_ratio * m_ratio * mB; if (m_mass > 0.0f) { m_mass = 1.0f / m_mass; } if (data.step.warmStarting) { // Scale impulses to support variable time steps. m_impulse *= data.step.dtRatio; // Warm starting. b2Vec2 PA = -(m_impulse) * m_uA; b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; vA += m_invMassA * PA; wA += m_invIA * b2Cross(m_rA, PA); vB += m_invMassB * PB; wB += m_invIB * b2Cross(m_rB, PB); } else { m_impulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Vec2 vpA = vA + b2Cross(wA, m_rA); b2Vec2 vpB = vB + b2Cross(wB, m_rB); float32 Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB); float32 impulse = -m_mass * Cdot; m_impulse += impulse; b2Vec2 PA = -impulse * m_uA; b2Vec2 PB = -m_ratio * impulse * m_uB; vA += m_invMassA * PA; wA += m_invIA * b2Cross(m_rA, PA); vB += m_invMassB * PB; wB += m_invIB * b2Cross(m_rB, PB); data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); // Get the pulley axes. b2Vec2 uA = cA + rA - m_groundAnchorA; b2Vec2 uB = cB + rB - m_groundAnchorB; float32 lengthA = uA.Length(); float32 lengthB = uB.Length(); if (lengthA > 10.0f * b2_linearSlop) { uA *= 1.0f / lengthA; } else { uA.SetZero(); } if (lengthB > 10.0f * b2_linearSlop) { uB *= 1.0f / lengthB; } else { uB.SetZero(); } // Compute effective mass. float32 ruA = b2Cross(rA, uA); float32 ruB = b2Cross(rB, uB); float32 mA = m_invMassA + m_invIA * ruA * ruA; float32 mB = m_invMassB + m_invIB * ruB * ruB; float32 mass = mA + m_ratio * m_ratio * mB; if (mass > 0.0f) { mass = 1.0f / mass; } float32 C = m_constant - lengthA - m_ratio * lengthB; float32 linearError = b2Abs(C); float32 impulse = -mass * C; b2Vec2 PA = -impulse * uA; b2Vec2 PB = -m_ratio * impulse * uB; cA += m_invMassA * PA; aA += m_invIA * b2Cross(rA, PA); cB += m_invMassB * PB; aB += m_invIB * b2Cross(rB, PB); data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return linearError < b2_linearSlop; } b2Vec2 b2PulleyJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2PulleyJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 P = m_impulse * m_uB; return inv_dt * P; } float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const { B2_NOT_USED(inv_dt); return 0.0f; } b2Vec2 b2PulleyJoint::GetGroundAnchorA() const { return m_groundAnchorA; } b2Vec2 b2PulleyJoint::GetGroundAnchorB() const { return m_groundAnchorB; } float32 b2PulleyJoint::GetLengthA() const { b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA); b2Vec2 s = m_groundAnchorA; b2Vec2 d = p - s; return d.Length(); } float32 b2PulleyJoint::GetLengthB() const { b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB); b2Vec2 s = m_groundAnchorB; b2Vec2 d = p - s; return d.Length(); } float32 b2PulleyJoint::GetRatio() const { return m_ratio; } void b2PulleyJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2PulleyJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.groundAnchorA.Set(%.15lef, %.15lef);\n", m_groundAnchorA.x, m_groundAnchorA.y); b2Log(" jd.groundAnchorB.Set(%.15lef, %.15lef);\n", m_groundAnchorB.x, m_groundAnchorB.y); b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); b2Log(" jd.lengthA = %.15lef;\n", m_lengthA); b2Log(" jd.lengthB = %.15lef;\n", m_lengthB); b2Log(" jd.ratio = %.15lef;\n", m_ratio); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }