/******************************************************************************* * Copyright (c) 2013, Esoteric Software * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ #include #include #include namespace cocos2d { namespace extension { Animation* Animation_create (const char* name, int timelineCount) { Animation* self = NEW(Animation); MALLOC_STR(self->name, name); self->timelineCount = timelineCount; self->timelines = MALLOC(Timeline*, timelineCount); return self; } void Animation_dispose (Animation* self) { int i; for (i = 0; i < self->timelineCount; ++i) Timeline_dispose(self->timelines[i]); FREE(self->timelines); FREE(self->name); FREE(self); } void Animation_apply (const Animation* self, Skeleton* skeleton, float time, int/*bool*/loop) { int i, n = self->timelineCount; #ifdef __STDC_VERSION__ if (loop && self->duration) time = fmodf(time, self->duration); #else if (loop && self->duration) time = (float)fmod(time, self->duration); #endif for (i = 0; i < n; ++i) Timeline_apply(self->timelines[i], skeleton, time, 1); } void Animation_mix (const Animation* self, Skeleton* skeleton, float time, int/*bool*/loop, float alpha) { int i, n = self->timelineCount; #ifdef __STDC_VERSION__ if (loop && self->duration) time = fmodf(time, self->duration); #else if (loop && self->duration) time = (float)fmod(time, self->duration); #endif for (i = 0; i < n; ++i) Timeline_apply(self->timelines[i], skeleton, time, alpha); } /**/ typedef struct _TimelineVtable { void (*apply) (const Timeline* self, Skeleton* skeleton, float time, float alpha); void (*dispose) (Timeline* self); } _TimelineVtable; void _Timeline_init (Timeline* self, /**/ void (*dispose) (Timeline* self), /**/ void (*apply) (const Timeline* self, Skeleton* skeleton, float time, float alpha)) { CONST_CAST(void*, self->vtable) = NEW(_TimelineVtable); VTABLE(Timeline, self) ->dispose = dispose; VTABLE(Timeline, self) ->apply = apply; } void _Timeline_deinit (Timeline* self) { FREE(self->vtable); } void Timeline_dispose (Timeline* self) { VTABLE(Timeline, self) ->dispose(self); } void Timeline_apply (const Timeline* self, Skeleton* skeleton, float time, float alpha) { VTABLE(Timeline, self) ->apply(self, skeleton, time, alpha); } /**/ static const float CURVE_LINEAR = 0; static const float CURVE_STEPPED = -1; static const int CURVE_SEGMENTS = 10; void _CurveTimeline_init (CurveTimeline* self, int frameCount, /**/ void (*dispose) (Timeline* self), /**/ void (*apply) (const Timeline* self, Skeleton* skeleton, float time, float alpha)) { _Timeline_init(SUPER(self), dispose, apply); self->curves = CALLOC(float, (frameCount - 1) * 6); } void _CurveTimeline_deinit (CurveTimeline* self) { _Timeline_deinit(SUPER(self)); FREE(self->curves); } void CurveTimeline_setLinear (CurveTimeline* self, int frameIndex) { self->curves[frameIndex * 6] = CURVE_LINEAR; } void CurveTimeline_setStepped (CurveTimeline* self, int frameIndex) { self->curves[frameIndex * 6] = CURVE_STEPPED; } void CurveTimeline_setCurve (CurveTimeline* self, int frameIndex, float cx1, float cy1, float cx2, float cy2) { float subdiv_step = 1.0f / CURVE_SEGMENTS; float subdiv_step2 = subdiv_step * subdiv_step; float subdiv_step3 = subdiv_step2 * subdiv_step; float pre1 = 3 * subdiv_step; float pre2 = 3 * subdiv_step2; float pre4 = 6 * subdiv_step2; float pre5 = 6 * subdiv_step3; float tmp1x = -cx1 * 2 + cx2; float tmp1y = -cy1 * 2 + cy2; float tmp2x = (cx1 - cx2) * 3 + 1; float tmp2y = (cy1 - cy2) * 3 + 1; int i = frameIndex * 6; self->curves[i] = cx1 * pre1 + tmp1x * pre2 + tmp2x * subdiv_step3; self->curves[i + 1] = cy1 * pre1 + tmp1y * pre2 + tmp2y * subdiv_step3; self->curves[i + 2] = tmp1x * pre4 + tmp2x * pre5; self->curves[i + 3] = tmp1y * pre4 + tmp2y * pre5; self->curves[i + 4] = tmp2x * pre5; self->curves[i + 5] = tmp2y * pre5; } float CurveTimeline_getCurvePercent (const CurveTimeline* self, int frameIndex, float percent) { float dfy; float ddfx; float ddfy; float dddfx; float dddfy; float x, y; int i; int curveIndex = frameIndex * 6; float dfx = self->curves[curveIndex]; if (dfx == CURVE_LINEAR) return percent; if (dfx == CURVE_STEPPED) return 0; dfy = self->curves[curveIndex + 1]; ddfx = self->curves[curveIndex + 2]; ddfy = self->curves[curveIndex + 3]; dddfx = self->curves[curveIndex + 4]; dddfy = self->curves[curveIndex + 5]; x = dfx, y = dfy; i = CURVE_SEGMENTS - 2; while (1) { if (x >= percent) { float lastX = x - dfx; float lastY = y - dfy; return lastY + (y - lastY) * (percent - lastX) / (x - lastX); } if (i == 0) break; i--; dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; x += dfx; y += dfy; } return y + (1 - y) * (percent - x) / (1 - x); /* Last point is 1,1. */ } /* @param target After the first and before the last entry. */ static int binarySearch (float *values, int valuesLength, float target, int step) { int low = 0, current; int high = valuesLength / step - 2; if (high == 0) return step; current = high >> 1; while (1) { if (values[(current + 1) * step] <= target) low = current + 1; else high = current; if (low == high) return (low + 1) * step; current = (low + high) >> 1; } return 0; } /*static int linearSearch (float *values, int valuesLength, float target, int step) { int i, last = valuesLength - step; for (i = 0; i <= last; i += step) { if (values[i] <= target) continue; return i; } return -1; }*/ /**/ void _BaseTimeline_dispose (Timeline* timeline) { struct BaseTimeline* self = SUB_CAST(struct BaseTimeline, timeline); _CurveTimeline_deinit(SUPER(self)); FREE(self->frames); FREE(self); } /* Many timelines have structure identical to struct BaseTimeline and extend CurveTimeline. **/ struct BaseTimeline* _BaseTimeline_create (int frameCount, int frameSize, /**/ void (*apply) (const Timeline* self, Skeleton* skeleton, float time, float alpha)) { struct BaseTimeline* self = NEW(struct BaseTimeline); _CurveTimeline_init(SUPER(self), frameCount, _BaseTimeline_dispose, apply); CONST_CAST(int, self->framesLength) = frameCount * frameSize; CONST_CAST(float*, self->frames) = CALLOC(float, self->framesLength); return self; } /**/ static const int ROTATE_LAST_FRAME_TIME = -2; static const int ROTATE_FRAME_VALUE = 1; void _RotateTimeline_apply (const Timeline* timeline, Skeleton* skeleton, float time, float alpha) { Bone *bone; int frameIndex; float lastFrameValue, frameTime, percent, amount; RotateTimeline* self = SUB_CAST(RotateTimeline, timeline); if (time < self->frames[0]) return; /* Time is before first frame. */ bone = skeleton->bones[self->boneIndex]; if (time >= self->frames[self->framesLength - 2]) { /* Time is after last frame. */ float amount = bone->data->rotation + self->frames[self->framesLength - 1] - bone->rotation; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; bone->rotation += amount * alpha; return; } /* Interpolate between the last frame and the current frame. */ frameIndex = binarySearch(self->frames, self->framesLength, time, 2); lastFrameValue = self->frames[frameIndex - 1]; frameTime = self->frames[frameIndex]; percent = 1 - (time - frameTime) / (self->frames[frameIndex + ROTATE_LAST_FRAME_TIME] - frameTime); percent = CurveTimeline_getCurvePercent(SUPER(self), frameIndex / 2 - 1, percent < 0 ? 0 : (percent > 1 ? 1 : percent)); amount = self->frames[frameIndex + ROTATE_FRAME_VALUE] - lastFrameValue; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; amount = bone->data->rotation + (lastFrameValue + amount * percent) - bone->rotation; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; bone->rotation += amount * alpha; } RotateTimeline* RotateTimeline_create (int frameCount) { return _BaseTimeline_create(frameCount, 2, _RotateTimeline_apply); } void RotateTimeline_setFrame (RotateTimeline* self, int frameIndex, float time, float angle) { frameIndex *= 2; self->frames[frameIndex] = time; self->frames[frameIndex + 1] = angle; } /**/ static const int TRANSLATE_LAST_FRAME_TIME = -3; static const int TRANSLATE_FRAME_X = 1; static const int TRANSLATE_FRAME_Y = 2; void _TranslateTimeline_apply (const Timeline* timeline, Skeleton* skeleton, float time, float alpha) { Bone *bone; int frameIndex; float lastFrameX, lastFrameY, frameTime, percent; TranslateTimeline* self = SUB_CAST(TranslateTimeline, timeline); if (time < self->frames[0]) return; /* Time is before first frame. */ bone = skeleton->bones[self->boneIndex]; if (time >= self->frames[self->framesLength - 3]) { /* Time is after last frame. */ bone->x += (bone->data->x + self->frames[self->framesLength - 2] - bone->x) * alpha; bone->y += (bone->data->y + self->frames[self->framesLength - 1] - bone->y) * alpha; return; } /* Interpolate between the last frame and the current frame. */ frameIndex = binarySearch(self->frames, self->framesLength, time, 3); lastFrameX = self->frames[frameIndex - 2]; lastFrameY = self->frames[frameIndex - 1]; frameTime = self->frames[frameIndex]; percent = 1 - (time - frameTime) / (self->frames[frameIndex + TRANSLATE_LAST_FRAME_TIME] - frameTime); percent = CurveTimeline_getCurvePercent(SUPER(self), frameIndex / 3 - 1, percent < 0 ? 0 : (percent > 1 ? 1 : percent)); bone->x += (bone->data->x + lastFrameX + (self->frames[frameIndex + TRANSLATE_FRAME_X] - lastFrameX) * percent - bone->x) * alpha; bone->y += (bone->data->y + lastFrameY + (self->frames[frameIndex + TRANSLATE_FRAME_Y] - lastFrameY) * percent - bone->y) * alpha; } TranslateTimeline* TranslateTimeline_create (int frameCount) { return _BaseTimeline_create(frameCount, 3, _TranslateTimeline_apply); } void TranslateTimeline_setFrame (TranslateTimeline* self, int frameIndex, float time, float x, float y) { frameIndex *= 3; self->frames[frameIndex] = time; self->frames[frameIndex + 1] = x; self->frames[frameIndex + 2] = y; } /**/ void _ScaleTimeline_apply (const Timeline* timeline, Skeleton* skeleton, float time, float alpha) { Bone *bone; int frameIndex; float lastFrameX, lastFrameY, frameTime, percent; ScaleTimeline* self = SUB_CAST(ScaleTimeline, timeline); if (time < self->frames[0]) return; /* Time is before first frame. */ bone = skeleton->bones[self->boneIndex]; if (time >= self->frames[self->framesLength - 3]) { /* Time is after last frame. */ bone->scaleX += (bone->data->scaleX - 1 + self->frames[self->framesLength - 2] - bone->scaleX) * alpha; bone->scaleY += (bone->data->scaleY - 1 + self->frames[self->framesLength - 1] - bone->scaleY) * alpha; return; } /* Interpolate between the last frame and the current frame. */ frameIndex = binarySearch(self->frames, self->framesLength, time, 3); lastFrameX = self->frames[frameIndex - 2]; lastFrameY = self->frames[frameIndex - 1]; frameTime = self->frames[frameIndex]; percent = 1 - (time - frameTime) / (self->frames[frameIndex + TRANSLATE_LAST_FRAME_TIME] - frameTime); percent = CurveTimeline_getCurvePercent(SUPER(self), frameIndex / 3 - 1, percent < 0 ? 0 : (percent > 1 ? 1 : percent)); bone->scaleX += (bone->data->scaleX - 1 + lastFrameX + (self->frames[frameIndex + TRANSLATE_FRAME_X] - lastFrameX) * percent - bone->scaleX) * alpha; bone->scaleY += (bone->data->scaleY - 1 + lastFrameY + (self->frames[frameIndex + TRANSLATE_FRAME_Y] - lastFrameY) * percent - bone->scaleY) * alpha; } ScaleTimeline* ScaleTimeline_create (int frameCount) { return _BaseTimeline_create(frameCount, 3, _ScaleTimeline_apply); } void ScaleTimeline_setFrame (ScaleTimeline* self, int frameIndex, float time, float x, float y) { TranslateTimeline_setFrame(self, frameIndex, time, x, y); } /**/ static const int COLOR_LAST_FRAME_TIME = -5; static const int COLOR_FRAME_R = 1; static const int COLOR_FRAME_G = 2; static const int COLOR_FRAME_B = 3; static const int COLOR_FRAME_A = 4; void _ColorTimeline_apply (const Timeline* timeline, Skeleton* skeleton, float time, float alpha) { Slot *slot; int frameIndex; float lastFrameR, lastFrameG, lastFrameB, lastFrameA, percent, frameTime; float r, g, b, a; ColorTimeline* self = (ColorTimeline*)timeline; if (time < self->frames[0]) return; /* Time is before first frame. */ slot = skeleton->slots[self->slotIndex]; if (time >= self->frames[self->framesLength - 5]) { /* Time is after last frame. */ int i = self->framesLength - 1; slot->r = self->frames[i - 3]; slot->g = self->frames[i - 2]; slot->b = self->frames[i - 1]; slot->a = self->frames[i]; return; } /* Interpolate between the last frame and the current frame. */ frameIndex = binarySearch(self->frames, self->framesLength, time, 5); lastFrameR = self->frames[frameIndex - 4]; lastFrameG = self->frames[frameIndex - 3]; lastFrameB = self->frames[frameIndex - 2]; lastFrameA = self->frames[frameIndex - 1]; frameTime = self->frames[frameIndex]; percent = 1 - (time - frameTime) / (self->frames[frameIndex + COLOR_LAST_FRAME_TIME] - frameTime); percent = CurveTimeline_getCurvePercent(SUPER(self), frameIndex / 5 - 1, percent < 0 ? 0 : (percent > 1 ? 1 : percent)); r = lastFrameR + (self->frames[frameIndex + COLOR_FRAME_R] - lastFrameR) * percent; g = lastFrameG + (self->frames[frameIndex + COLOR_FRAME_G] - lastFrameG) * percent; b = lastFrameB + (self->frames[frameIndex + COLOR_FRAME_B] - lastFrameB) * percent; a = lastFrameA + (self->frames[frameIndex + COLOR_FRAME_A] - lastFrameA) * percent; if (alpha < 1) { slot->r += (r - slot->r) * alpha; slot->g += (g - slot->g) * alpha; slot->b += (b - slot->b) * alpha; slot->a += (a - slot->a) * alpha; } else { slot->r = r; slot->g = g; slot->b = b; slot->a = a; } } ColorTimeline* ColorTimeline_create (int frameCount) { return (ColorTimeline*)_BaseTimeline_create(frameCount, 5, _ColorTimeline_apply); } void ColorTimeline_setFrame (ColorTimeline* self, int frameIndex, float time, float r, float g, float b, float a) { frameIndex *= 5; self->frames[frameIndex] = time; self->frames[frameIndex + 1] = r; self->frames[frameIndex + 2] = g; self->frames[frameIndex + 3] = b; self->frames[frameIndex + 4] = a; } /**/ void _AttachmentTimeline_apply (const Timeline* timeline, Skeleton* skeleton, float time, float alpha) { int frameIndex; const char* attachmentName; AttachmentTimeline* self = (AttachmentTimeline*)timeline; if (time < self->frames[0]) return; /* Time is before first frame. */ if (time >= self->frames[self->framesLength - 1]) /* Time is after last frame. */ frameIndex = self->framesLength - 1; else frameIndex = binarySearch(self->frames, self->framesLength, time, 1) - 1; attachmentName = self->attachmentNames[frameIndex]; Slot_setAttachment(skeleton->slots[self->slotIndex], attachmentName ? Skeleton_getAttachmentForSlotIndex(skeleton, self->slotIndex, attachmentName) : 0); } void _AttachmentTimeline_dispose (Timeline* timeline) { AttachmentTimeline* self; int i; _Timeline_deinit(timeline); self = (AttachmentTimeline*)timeline; for (i = 0; i < self->framesLength; ++i) FREE(self->attachmentNames[i]); FREE(self->attachmentNames); FREE(self->frames); FREE(self); } AttachmentTimeline* AttachmentTimeline_create (int frameCount) { AttachmentTimeline* self = NEW(AttachmentTimeline); _Timeline_init(SUPER(self), _AttachmentTimeline_dispose, _AttachmentTimeline_apply); CONST_CAST(char**, self->attachmentNames) = CALLOC(char*, frameCount); CONST_CAST(int, self->framesLength) = frameCount; CONST_CAST(float*, self->frames) = CALLOC(float, frameCount); return self; } void AttachmentTimeline_setFrame (AttachmentTimeline* self, int frameIndex, float time, const char* attachmentName) { self->frames[frameIndex] = time; FREE(self->attachmentNames[frameIndex]); if (attachmentName) MALLOC_STR(self->attachmentNames[frameIndex], attachmentName); else self->attachmentNames[frameIndex] = 0; } }} // namespace cocos2d { namespace extension {